Solving Jacobi Matrices: Finding Det H6

  • Thread starter Thread starter dracolnyte
  • Start date Start date
  • Tags Tags
    Jacobi Matrices
dracolnyte
Messages
28
Reaction score
0

Homework Statement


An n x n array Hn = (hij) is said to be a jacobi matrix if hij = 0 whenever |i - j| >= 2. Suppose Hn also has the property that for each index i, hii = a, hi, i+1 = b and hi,i-1 = c. For instance, H4 =

a b 0 0
c a b 0
0 c a b
0 0 c a

(i) Show that det Hn = a (det Hn-1) - bc (det Hn-2) for n = 3,4,...

(ii) Find det H6.

The Attempt at a Solution


I was thinking of converting this into an upper triangle and use that theorem to solve by finding the product of the main diagonals. but I don't know how to prove for general n x n case and I don't know what it means by det Hn-1 and Hn-2
 
Physics news on Phys.org
Looks like a straightforward calculation. Hn-1 and Hn-2 are, of course, the Jacobi matrices of order n-1 and n-2.

Expand Hn on the first row. Then Hn= a(cofactora)- b(cofactorb). It should be easy to see that "cofactora" is just Hn-1, so that part is aHn-1 while "cofactorb" has first column consisting of "c 0 0 ...". Expand that on the first column and you have "bcHn-2".

For example, with n= 4 you have
H_3= \left|\begin{array}{cccc}a & b & 0 & 0 \\ c & a & b& 0 \\ 0 & c & a & b \\0 & 0 & c & a\end{array}\right|= a\left|\begin{array}{ccc}a & b & 0 \\ c & a & b \\ 0 & c & b\end{array}\right|- b\left|\begin{array}{ccc}c & b & 0 \\ 0 & a & b \\ 0 & c & a\end{array}\right|
= a\left|\begin{array}{ccc}a & b & 0 \\ c & a & b \\ 0 & c & b\end{array}\right|- bc\left|\begin{array}{cc}a & b \\ c & a \end{array}\right|= aH_2- bcH_1
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top