Solving partial differential equations

Click For Summary
The discussion centers on the necessity of the sign function in the odd periodic extension of the function f(x) = sin^2 x for solving the partial differential equation y_tt = 4 y_xx. The sign function is used to ensure that the extension F(x) is odd, which is crucial for satisfying the boundary conditions y(0,t) = 0 and y(pi,t) = 0. Participants note that while sin^2 x is even, the odd extension requires the sign function to maintain the odd symmetry. A comparison is made to another example where a different function did not require the sign function, prompting further inquiry into the specific characteristics of the functions involved. Understanding these requirements is essential for correctly applying the d'Alembert solution method.
jaejoon89
Messages
187
Reaction score
0
Hi, why does the sign function need to be used in the following?

---
The given equation is y_tt = 4 y_xx
0 < x < pi, t>0
where y_tt is the 2nd derivative with respect to t, y_xx is 2nd wrt x

Boundary conditions
y(0,t) = 0 and y(pi,t) = 0

And initial conditions
y_t (x,0) = 0 = g(x)
y(x,0) = sin^2 x = f(x)

---
General solution (d'Alembert's solution):
y(x,t) = 1/2[F(x+at) - F(x-at)] + int[G(s)ds] from x-at to x+at

My teacher wrote that F(x) is the odd periodic extension of f(x), and then wrote

F(x) = sign(sinx)sin^2 x
Why?
 
Physics news on Phys.org
jaejoon89 said:
Hi, why does the sign function need to be used in the following?

---
The given equation is y_tt = 4 y_xx
0 < x < pi, t>0
where y_tt is the 2nd derivative with respect to t, y_xx is 2nd wrt x

Boundary conditions
y(0,t) = 0 and y(pi,t) = 0

And initial conditions
y_t (x,0) = 0 = g(x)
y(x,0) = sin^2 x = f(x)

---
General solution (d'Alembert's solution):
y(x,t) = 1/2[F(x+at) - F(x-at)] + int[G(s)ds] from x-at to x+at

My teacher wrote that F(x) is the odd periodic extension of f(x), and then wrote

F(x) = sign(sinx)sin^2 x
Why?

First try to remember what the requirements are in order for a function to be considered odd. Second, ask yourself what the sign function does. See if you can put these two pieces of info together, in conjunction with the fact that F(x) is odd, to figure out your question.
 
Well, I understand that it makes it odd. Except we had a similar example where y(x,0) = 1/(1+x^2) (which, like sin^2, is even) and the sign function wasn't used. So there must be something else to consider. What is the reason?

y_tt = y_xx
x for all real numbers, t less than or equal to 0
y_t (x,0) = 0
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
972
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
874
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K