Solving Probability of A & B: Find P(B)

  • Thread starter Thread starter brendan
  • Start date Start date
brendan
Messages
64
Reaction score
0
Hi Guys,
I have been given the following Question.
Given that P(A) = 0.4 and P(AorB) = 0.9 Find P(B) if A and B are independent.

I know That if the're independent

P(A&B) = P(A)P(B)

P(AorB) = P(A) + P(B) - P(A&B)

And as the're independent

P(A|B) = P(A)

and

P(A|B) = P(A&B)/P(B)


As P(A&B) = P(A) + P(B) - P(A&B)


I know P(A) = 0.4, P(A|B) = 0.4 P(AorB)= 0.9 and

P(AorB) <= P(A) + P(B)
0.9 <= 0.4 + P(B)
Which implies that P(B) <= 0.5

I'm Trying to find P(B) however I'm having a lot of difficulty finding P(A&B).

Could someone please point me in the right direction of finding P(A&B)?

Kindest regards
Brendan
 
Physics news on Phys.org
brendan said:
Hi Guys,
I have been given the following Question.
Given that P(A) = 0.4 and P(AorB) = 0.9 Find P(B) if A and B are independent.

I know That if the're independent

P(A&B) = P(A)P(B)

P(AorB) = P(A) + P(B) - P(A&B)

And as the're independent

P(A|B) = P(A)

and

P(A|B) = P(A&B)/P(B)


As P(A&B) = P(A) + P(B) - P(A&B)
Typo: that last "P(A&B)" should be P(AorB)


I know P(A) = 0.4, P(A|B) = 0.4 P(AorB)= 0.9 and

P(AorB) <= P(A) + P(B)
0.9 <= 0.4 + P(B)
Which implies that P(B) <= 0.5

I'm Trying to find P(B) however I'm having a lot of difficulty finding P(A&B).

Could someone please point me in the right direction of finding P(A&B)?

Kindest regards
Brendan
You have already said that P(A&B)= P(A)P(B) because they are independent.
P(AorB)= P(A)+ P(B)- P(A&B)= P(A)+ P(B)- P(A)P(B).

You are told that P(A)= 0.4 and P(AorB)= 0.9. That equation becomes
0.9= 0.4+ P(B)- 0.4P(B). Solve that equation.
 
Thanks a lot for your help I really appreciate it
0.9= 0.4+ P(B)- 0.4P(B). Solve that equation.

p(B) = .833 and p(A&B) = .33

I will be remembering that one!

regards
Brendan
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top