MHB Solving Quadratic Equations: Find k

Albert1
Messages
1,221
Reaction score
0
the solutions of :

$x^2+kx+k=0 "

are $ $sin \,\theta \,\,and \,\, cos\, \theta $

please find : $k=?$
 
Mathematics news on Phys.org
Hello, Albert!

\text{The solutions of: }\: x^2+kx+k\:=\:0
\text{are }\sin\theta\text{ and }\cos\theta

\text{Find }k.
Since k \,=\,\sin\theta\cos\theta, we see that: .|k| \,<\,1.

Quadratic Formula: .x \:=\:\frac{-k \pm \sqrt{k^2-4k}}{2}

\text{Let: }\:\begin{Bmatrix}\sin\theta &=& \frac{-k + \sqrt{k^2-4k}}{2} \\ \cos\theta &=& \frac{-k -\sqrt{k^2-4k}}{2} \end{Bmatrix}

\text{Then: }\:\begin{Bmatrix}\sin^2\theta &=& \frac{2k^2 - 4k + 2k\sqrt{k^2-4k}}{4} \\ \cos^2\theta &=& \frac{2k^2 - 4k - 2k\sqrt{k^2-4k}}{4} \end{Bmatrix}

\text{Add: }\:\sin^2\theta + \cos^2\theta \:=\:\frac{4k^2 - 8k}{4} \:=\:1

\text{And we have: }\:k^2 - 2k - 1\:=\:0

\text{Hence: }\:k \:=\:1\pm\sqrt{2}\text{Since }|k| < 1\!:\;k \:=\:1-\sqrt{2}
 
Last edited by a moderator:
By Vieta's formulas, we have
$$k=\sin\theta \cos\theta$$
$$\sin\theta+\cos\theta=-k$$
Squaring both the sides of second equation,
$$1+2\sin\theta \cos\theta=k^2 \Rightarrow k^2-2k=1 \Rightarrow k^2-2k+1=2 \Rightarrow (k-1)^2=2$$
$$\Rightarrow k=1\pm \sqrt{2}$$
But $|k|<1$, hence, $k=1-\sqrt{2}$.
 
thanks all for your participation:)

your answers are correct !
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
6
Views
2K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
16
Views
4K
Replies
5
Views
1K
Back
Top