Ravi Mohan
- 195
- 21
How do we solve a system of coupled differential equations written below?
<br /> -\frac{d^2}{dr^2}\left(<br /> \begin{array}{c}<br /> \phi_{l,bg}(r) \\<br /> \phi_{l,c}(r) \\<br /> \end{array} \right)+ \left(<br /> \begin{array}{cc}<br /> f(r) & \alpha_1 \\<br /> \alpha_2 & g(r)\\ <br /> \end{array} \right).\left(<br /> \begin{array}{c}<br /> \phi_{l,bg}(r) \\<br /> \phi_{l,c}(r) \\<br /> \end{array} \right) = E\left(<br /> \begin{array}{c}<br /> \phi_{l,bg}(r) \\<br /> \phi_{l,c}(r) \\<br /> \end{array} \right) <br />
Here f(r) and g(r) are quadratic functions of r. \alpha_1,\alpha_2\text{ and }E are constants.
<br /> -\frac{d^2}{dr^2}\left(<br /> \begin{array}{c}<br /> \phi_{l,bg}(r) \\<br /> \phi_{l,c}(r) \\<br /> \end{array} \right)+ \left(<br /> \begin{array}{cc}<br /> f(r) & \alpha_1 \\<br /> \alpha_2 & g(r)\\ <br /> \end{array} \right).\left(<br /> \begin{array}{c}<br /> \phi_{l,bg}(r) \\<br /> \phi_{l,c}(r) \\<br /> \end{array} \right) = E\left(<br /> \begin{array}{c}<br /> \phi_{l,bg}(r) \\<br /> \phi_{l,c}(r) \\<br /> \end{array} \right) <br />
Here f(r) and g(r) are quadratic functions of r. \alpha_1,\alpha_2\text{ and }E are constants.