I Solving Spherically Symmetric Static Star Equations of Motion

epovo
Messages
114
Reaction score
21
TL;DR Summary
Help with getting the result in Schutz
Hi guys,
I can't seem to be able to get to
$$ (\rho + p) \frac {d\Phi} {dr} = - \frac {dp} {dr} $$
from
$$T^{\alpha\beta}_{\,\,\,\,;\beta} = 0$$
the only one of these 4 equations (in the case of a spherically symmetric static star) that does not identically vanish is that for ##\alpha=r##

Because ##T^{\alpha\beta}## is diagonal, that means ##T^{rr}_{\,\,\,\,;r}=0##.
We know that ##T^{rr}=p e^{-2\Lambda}## and that ##\Gamma^r_{\mu r} = \Lambda_{,r}##. So,

$$T^{rr}_{\,\,\,\,;r}=T^{rr}_{\,\,\,\,,r} + 2 \Gamma^r_{\mu r} T^{\mu r} = p_{,r}e^{-2\Lambda} - 2 p e^{-2\Lambda}\Lambda_{,r} + 2 \Lambda_{,r}p e^{-2\Lambda}=0 $$

And I get simply

$$ \frac {dp} {dr} = 0 $$
... which makes no sense! where did I go wrong? This is going to be embarrassing....
 
Physics news on Phys.org
Silly me! I don't know how I could have omitted the rest of the ##\beta##-components.
Thank you @PeterDonis
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top