Solving the Problem: ∑_(k=100)^200▒〖k^3〗

  • Thread starter Thread starter Dlak1992
  • Start date Start date
Dlak1992
Messages
1
Reaction score
0
So, I am doing my HW, got everything done except for 1 problem. I have been stuck looking for an example of how to do this, but my book does not have any examples.

The problem is: ∑_(k=100)^200▒〖k^3〗

If someone does not understand it, it is.

200 is on top of the sigma
K=100 on the bottom
and k^3 to the right.
 
Physics news on Phys.org
Welcome to PF!

Hi Dlak1992! Welcome to PF! :smile:

(try using the X2 and X2 icons just above the Reply box :wink:)

You may find it easier to do ∑k=100200 k(k-1)(k-2) first. :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top