I Solving the Spherically Symmetric Einstein Equation

Tomas Vencl
Messages
74
Reaction score
16
TL;DR Summary
When suppose only spherically symmetric distribution of mass-energy, how it simpify the Einstein equation ?
Can be Einstein equation rewrited into some simpler form, when suppose only spherically symmetric (but not necessarily stationary) distribution of mass-energy ?
If yes, is there some source to learn more about it ?
Thank you.
edit: by simpler form I mean something with rather expressed derivatives, than more compact form (if this makes sense)
 
Last edited:
Physics news on Phys.org
Tomas Vencl said:
Can be Einstein equation rewrited into some simpler form, when suppose only spherically symmetric (but not necessarily stationary) distribution of mass-energy ?

Yes. For the spherically symmetric case, there are only two unknown functions of the coordinates in the metric (a general metric with no symmetry has ten unknown functions of the coordinates, one for each of the independent metric components). The most common way of treating this case is to choose coordinates such that the metric is diagonal and the areal radius ##r## (given by ##r = \sqrt{A / 4 \pi}##, where ##A## is the radius of the 2-sphere containing the event in spacetime whose coordinates one is evaluating) is one of the coordinates. The general form of the metric with these assumptions, along with the significant components of the Einstein tensor, is given in this Insights article:

https://www.physicsforums.com/insights/short-proof-birkhoffs-theorem/

The article only considers the actual solution of the EFE for the vacuum case; but one can easily generalize what is done there to the non-vacuum case by simply putting the appropriate stress-energy tensor components (as functions of ##t## and ##r##) on the RHS of the equations.
 
  • Like
Likes vanhees71
Thank you both, I will look at the links.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Back
Top