MHB Solving Trig Equation: Find the Answer Quickly

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Trig
AI Thread Summary
The discussion revolves around solving the trigonometric equation $(\sec^4 x +16)^2=2^{12}(4\tan x+1)$. The initial approach involved using the Newton-Raphson method, but a participant suggested substituting $\sec^2(x) = 1 + \tan^2(x)$ to simplify the equation to one in terms of $\tan(x)$. However, this substitution led to a more complex polynomial, ultimately requiring reliance on numerical methods for solutions. The original poster is seeking a more efficient shortcut to solve the problem without complicating it further. The conversation emphasizes the challenge of finding simpler methods for solving complex trigonometric equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

Do you think this problem can be approached wisely, rather than expanding it and attack it using the Newton-Raphson method (which I did)?

Problem:

Solve $(\sec^4 x +16)^2=2^{12}(4\tan x+1)$

Thanks for reading and I would appreciate it if in case, you could solve it using shortcut that I failed to acknowledge and share it with me.
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

Do you think this problem can be approached wisely, rather than expanding it and attack it using the Newton-Raphson method (which I did)?

Problem:

Solve $(\sec^4 x +16)^2=2^{12}(4\tan x+1)$

Thanks for reading and I would appreciate it if in case, you could solve it using shortcut that I failed to acknowledge and share it with me.

Well writing $\displaystyle \begin{align*} \sec^2{(x)} = 1 + \tan^2{(x)} \end{align*}$ so that the equation is only in terms of $\displaystyle \begin{align*} \tan{(x)} \end{align*}$ would be a start :)
 
Prove It said:
Well writing $\displaystyle \begin{align*} \sec^2{(x)} = 1 + \tan^2{(x)} \end{align*}$ so that the equation is only in terms of $\displaystyle \begin{align*} \tan{(x)} \end{align*}$ would be a start :)

Thanks, Prove It for your reply. In fact, I solved this problem by using that substitution. I am hoping if you or anyone could find a short cut to approach the problem, since the substitution method led to a more complex polynomial and I at last have to rely wholly on the Newton-Raphson method to find the approximate answers to this problem...(Thinking)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
1K
Replies
11
Views
3K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
3
Views
3K
Back
Top