gikiian
- 98
- 0
I have the ODE x''(t)+\frac{k}{m}x(t)=0.
Given that the solution is of the form sin(ωt+ø), I plug this form into the original ODE and obtain ω=+\sqrt\frac{k}{m},-\sqrt\frac{k}{m}.
And hence, I obtain two solutions of the ODE as follows:
x_{1}(t)=Asin(\sqrt\frac{k}{m}t+ø), x_{2}(t)=Bsin(-\sqrt\frac{k}{m}t+ø)
Next, I check for the linear independence of the two solutions using the 2x2 Wronskian matrix and obtain Wronskian=-2ωsin(ø) which vanishes at ø=0 or ω=0, implying that the two solutions are not linearly independent.
How can I find the second solution of the second order ODE?
Given that the solution is of the form sin(ωt+ø), I plug this form into the original ODE and obtain ω=+\sqrt\frac{k}{m},-\sqrt\frac{k}{m}.
And hence, I obtain two solutions of the ODE as follows:
x_{1}(t)=Asin(\sqrt\frac{k}{m}t+ø), x_{2}(t)=Bsin(-\sqrt\frac{k}{m}t+ø)
Next, I check for the linear independence of the two solutions using the 2x2 Wronskian matrix and obtain Wronskian=-2ωsin(ø) which vanishes at ø=0 or ω=0, implying that the two solutions are not linearly independent.
How can I find the second solution of the second order ODE?