Some questions about solving eigenproblems to do modal analysis

AI Thread Summary
The discussion focuses on solving the eigenproblem represented by the equation MQD=KQ, where M is the mass matrix, K is the stiffness matrix, Q is the modal shapes matrix, and D is a diagonal matrix of modal frequencies. The key is to recognize that the equation can be transformed into the form A = M^-1K, allowing for the identification of eigenvalues (D) and eigenvectors (Q). Users are advised to utilize the ARPACK library, which implements the Lanczos method, to efficiently solve this eigenproblem without needing to understand the algorithm's intricate details. Understanding eigenvalues and vectors is essential, as they relate to natural frequencies and vibration mode shapes. For further clarity on the mathematical and physical connections, resources on multiple degree of freedom dynamics (MDOF) are recommended.
blah900
Messages
4
Reaction score
0
So for my graphics class I am currently reading "Stochastic Dynamics: Simulating the Effects of Turbulence on Flexible Structures" by Jos Stam

However, while starting to implement it, I've realized my understanding of math is not strong enough to fully understand what is going on so I have a couple of questions.

Given the mass matrix M and stiffness matrix K, how would I go about solving MQD=KQ where Q is the modal shapes matrix and D is a diagonal matrix of modal frequency involved with Q. I am not sure how Q and D can both be found from this one equation and exactly what part of this problem is a eigenproblem.

I am told that I should use ARPACK(which according to the paper uses Lanczos method) but without first understanding what is going on in that equation, I am not sure how to proceed. I would like any help or hint on understanding this.
 
Mathematics news on Phys.org
Do you understand what the eigenvalues and vectors of a single matrix are? In other words do you understand why an equation like ##Ax = \lambda x## only has "interesting" solutions for some particular values of ##\lambda##?

In principle, you can extend those ideas to your equation simply by taking ##A = M^{-1}K##. In practice, you don't solve the problem that way numerically, because there are much more efficient ways to do it.

You shouldn't have to understand all the details of how the Lanczos algorithm in ARPACK actually works. All you need is the basic concept of what eigenvalues and vectors are, how to supply your matrices to the routine, and how the answers are returned from it.
 
So basically the D becomes the eigenvalues and Q ends up becoming the eigenvector of the
A = M-1K
Ax=λx equation?

And I would just use ARPACK and find the part of the function that does this for me automatically given the stiffness matrix K and mass matrix M?

I think I am beginning to understand now, please correct me if I'm wrong.
 
That's right. You would usually write an eigenvalue ##\lambda_i## as ##\omega^2_i## where ##\omega_i## is the natural frequency (in radians per second), and the corresponding eigenvector is the vibratiion mode shape.

If you want more details on how the math relates to the physics, Google for "muiltiple degree of freedom dynamics" or MDOF.

I woudn't recommend trying to understand the Lanczos algorithm unless you already know quite a bit about linear algebra and computational methods, but it's widely used as a "general purpose" solution method for this type of eigenproblem with large matrices (up to order 100,000 or more).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top