1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Some quick ideal diode analysis

  1. Feb 8, 2015 #1

    Zondrina

    User Avatar
    Homework Helper

    1. The problem statement, all variables and given/known data

    Find the currents and voltages indicated for the circuits given:

    Screen Shot 2015-02-08 at 11.43.27 AM.png

    2. Relevant equations


    3. The attempt at a solution

    I needed some practice, and I want to ensure I understand for the harder problems later.

    (a) The diode is going to behave like a short circuit, so the current can be found from ##I = \frac{5V - (-5V)}{10k} = 1 mA##. The voltage will be entirely across the ##10k## resistor, and so ##V = 0 V##.

    (b) The diode is going to behave like an open circuit, hence the current in the branch is ##I = 0 A##. None of the voltage will be across the resistor since there is no current, and so ##V = 5V - (-5V) = 10V##.

    (c) The diode is going to behave like a short circuit again, so the current can be found from ##I = \frac{5V - (-5V)}{10k} = 1 mA##. The voltage ##V## will be entirely across the resistor, so ##V = 5V - (-5V) = 10V##.

    (d) The diode will behave as an open circuit, so ##I = 0 A##. The voltage is a bit confusing to me though, would it be ##10V## again? I'm finding it difficult to reason it out.
     
  2. jcsd
  3. Feb 8, 2015 #2
    (a) If the diode is represented as a short, then V and the bottom node will be one and the same, so what is V?

    b, c and d have the same problem.
     
  4. Feb 8, 2015 #3

    phinds

    User Avatar
    Gold Member
    2016 Award

    You are totally ignoring any possible effects of whatever is hooked to the node labeled V but your "answers" do not reflect that.
     
  5. Feb 8, 2015 #4

    Zondrina

    User Avatar
    Homework Helper

    Okay, so:

    (a) ##I = 1mA, V = -5V##.

    (b) ##I = 0, V = -5V##.

    (c) ##I = 1mA, V = 5V##.

    (d) ##I = 0, V = 5V##.

    Weird, the harder problems in the book are easier than these were. I had a dull moment looking at these.
     
  6. Feb 8, 2015 #5

    phinds

    User Avatar
    Gold Member
    2016 Award

    I have no objection to your ignoring the rest of any possible circuit if that's what you want to do, but you need to SAY that that's what you are doing (otherwise it just looks like a serious oversight on your part) and you should give some thought as to whether or not that's a good idea in terms of learning how circuits work.
     
  7. Feb 8, 2015 #6

    Zondrina

    User Avatar
    Homework Helper

    Miles helped me realize it was all the same node in the cases of (a) and (c) when I visualized the short circuit. In the cases of (b) and (d), the open circuit looked a little funny at first, but I know I can't ignore it.
     
  8. Feb 8, 2015 #7
    (b) If there's no current, then there's no voltage drop across the resistor. The top node and V are then at the same potential, so what is V?

    Same thing goes for (d).
     
  9. Feb 8, 2015 #8

    Zondrina

    User Avatar
    Homework Helper

    Okay, so literally every detail needs to be accounted for at this point, including the fact the resistor is is short circuited due to zero current. Then I could say ##V = 5V## and not ##-5V## for (b).

    Similarly, for (d), the open circuit would cause ##V = -5 V##, due to zero current.
     
  10. Feb 8, 2015 #9
    I wouldn't say it's shorted, it just doesn't have any voltage across it.

    Yes. :)
     
  11. Feb 8, 2015 #10

    Zondrina

    User Avatar
    Homework Helper

    I'm wondering if you could help me with a curiosity now that I have the question sorted out. Using the exact same diagrams and problem statement, I want to find the voltages and currents using the constant ##0.7V## voltage drop model.

    (a) The diode behaves like a short circuit. I believe ##I = \frac{V_{DD} - V_D}{R} = \frac{4.3V}{10k} = 0.43 mA## and ##V = 0.7V##.

    (b) The diode behaves like an open circuit. Hence ##I = 0## and ##V = 5V##.

    (c) I'm a bit confused by this one. The diode behaves like a short circuit. Would it be ##V = 4.3V## and ##I = \frac{9.3V}{10k} = 0.93 mA##?

    (d) The diode behaves like an open circuit. Hence ##I= 0## and ##V = -5V##.

    Do these seem reasonable given the different conditions?
     
  12. Feb 8, 2015 #11
    (a) The diode drops 0.7 V, i.e. V must be 0.7 V higher than -5 V. What is V then?

    That doesn't make any difference for the current, though. For the ideal case, the resistor had 10 V across it. Now it has 0.7 V less, which must be the same for both (a) and (c), i.e. the current must be the same.

    (c) V must be 0.7 V lower than 5 V, so V = 4.3 V is correct.

    Edit:
    This is a minor thing, but a short circuit in circuit analysis typically means a connection with an ideal wire, which has no voltage across it by definition. It would probably be more correct to say the diode is either forward or reverse biased.
     
    Last edited: Feb 8, 2015
  13. Feb 8, 2015 #12

    Zondrina

    User Avatar
    Homework Helper

    Back from more problems. I think this one is clear now.

    (a) I see now that there should be a ##9.3 V## drop across the resistor ##R## just looking at it... The diode drops the other ##0.7 V##. Hence the voltage ##V = -4.3 V##. The current is then given by ##I = \frac{5V - (- 4.3 V)}{10 k} = \frac{9.3 V}{10 k} = 0.93 mA##.

    (b) The diode is not conducting, so my answer has not changed, ##I = 0## and ##V = 5V##.

    (c) I actually understand this fully now. Since the diode is conducting a reasonable amount of current, ##V## is ##0.7V## less than ##5V## and so ##V = 4.3V##. Hence the current ##I = 0.93 mA##.

    (d) Same answer as before. Open circuit, ##I = 0##, ##V = -5V##.

    I think after doing so many problems I've pieced this diode thing together. I actually get the voltage drop idea at this point, so I should be okay.

    Back to work, thanks for all your help.
     
  14. Feb 8, 2015 #13
    That's true. I took the view that ##V## must be at some value that's higher than -5 V, since the diode has a voltage drop, i.e. what value of ##V## would allow you to drop 0.7 V and end up at -5 V? That has to be -4.3 V, as you wrote.

    I assumed you were using the "ideal diode with a twist"-model, where the diode drops 0.7 V at any current if forward biased, or drops any voltage necessary to keep a current from flowing if reverse biased.

    You're very welcome.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Some quick ideal diode analysis
  1. Ideal diode circuit (Replies: 2)

  2. Ideal diodes in series (Replies: 1)

  3. Ac circuit,ideal diode (Replies: 2)

Loading...