Someone help. Sequence and continuous functions.

Charles007
Messages
21
Reaction score
0
I am confused with sequence and continuous functions.

I am confued with their limit. how do they know the min and max before they attempt the question. and is that the only solution to the question? I mean. Everytimes if I see kind question like this, is that only way to do it?...

Many thx.

Squence

View attachment 20305

Continuous Functions.

View attachment 20306
 
Mathematics news on Phys.org
The short answer is that they don't know the details in advance. Using the first problem as an example, you see that for large n, the numerator is essentially n2, while the denominator is essentially n3, so the fraction is roughly 1/n. The rest is just filling in details to make it rigorous.
 
I still don't understand how to get it. :frown:
 
Do you understand that the example, as given, is not an example on how to find the limit but how to prove the limit is correct after you have found it? That is, for the purposes of the example, how the limit, 0, is found, is irrelevant.

The first sequence is
\left\{\frac{n^2+ 2n}{n^3- 5}\right\}
and, as mathman said, for very large n, the highest power in both numerator and denominator will be far larger than the rest so, for large n, the fraction will be close to n^2/n^3= 1/n which goes to 0 as n gets larger and larger.

So we guess that the limit of the given sequence is 0. Then we proceed to show, as in the example, that 0 is, in fact, correct.
 
Last edited by a moderator:
Charles007 said:
I still don't understand how to get it. :frown:

There is no hard and fast rule. Limits are a way of rigorising the art of approximation. Your job is to simplify an expression enough so that you see the general behavior as it approaches some point, and then guess or approximate what happens at that point by comparing it to functions you already know. You can also use the rigor of making sure that there is some number bounding the expression.
This is partially why you studied the behavior of all those different types of functions in precalculus.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top