Sounds waves and guitar strings

Click For Summary

Discussion Overview

The discussion revolves around the physics of sound waves produced by guitar strings, specifically focusing on calculations related to string vibration, including the period of a string, side-to-side velocity, and the relationship between string diameter and tension. The scope includes mathematical reasoning and conceptual clarification related to harmonic motion and string properties.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Conceptual clarification

Main Points Raised

  • Participants discuss the calculation of the period (T) of the G string based on its frequency.
  • Some participants suggest that the length of the string corresponds to half of the wavelength, which is relevant for understanding its vibration.
  • There is a query about the formula relating to the diameter of the string and its impact on tension.
  • One participant mentions a formula for frequency involving tension and mass per unit length (ML), seeking clarification on the meaning of ML.
  • Another participant points out that mass may depend on the diameter of the string, indicating a potential relationship that needs exploration.
  • Participants express uncertainty about how to approach the calculation of the diameter of the D string given equal tension with the A string.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the approach to solving part C of the problem, and multiple viewpoints regarding the relationships between diameter, mass, and tension are presented without resolution.

Contextual Notes

Participants express uncertainty about the formulas needed for calculations, particularly regarding the relationship between string diameter and tension, and the implications of mass per unit length in the context of string vibration.

Mango12
Messages
48
Reaction score
0
C=130Hz
G=196Hz
D=293Hz
A=440 Hz

The distance from the nut to the bridge is 58cm, the amplitude of the string vibration is 2.2mm

Part A: What is the period (T) of the G string?
Part B: What is the side to side velocity of the g string? (Think simple harmonic motion)
Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal?

I don't really know how to approach this, and any help would be appreciated. Thank you.
 
Mathematics news on Phys.org
Mango12 said:
C=130Hz
G=196Hz
D=293Hz
A=440 Hz

The distance from the nut to the bridge is 58cm, the amplitude of the string vibration is 2.2mm

Part A: What is the period (T) of the G string?
Part B: What is the side to side velocity of the g string? (Think simple harmonic motion)
Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal?

I don't really know how to approach this, and any help would be appreciated. Thank you.
UPDATE: I figured out how to do part A, but I still need help with part B and C
 
Mango12 said:
C=130Hz
G=196Hz
D=293Hz
A=440 Hz

The distance from the nut to the bridge is 58cm, the amplitude of the string vibration is 2.2mm

Part A: What is the period (T) of the G string?
Part B: What is the side to side velocity of the g string? (Think simple harmonic motion)
Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal?

I don't really know how to approach this, and any help would be appreciated. Thank you.

Hi Mango12! ;)

B. The length of the string corresponds to half of the wave length, which is how it vibrates.
C. Do you have a formula that includes the diameter of the string?
 
I like Serena said:
Hi Mango12! ;)

B. The length of the string corresponds to half of the wave length, which is how it vibrates.
C. Do you have a formula that includes the diameter of the string?

I figured out part B, but now I just have to do C.

I don't have any formulas with diameter in them. The only formula I have relating to tension is f=1/2\sqrt{tension/ML}
 
Mango12 said:
I figured out part B, but now I just have to do C.

I don't have any formulas with diameter in them. The only formula I have relating to tension is f=1/2\sqrt{tension/ML}

What is ML?
 
M is mass and L is length of the string...unless you know a different formula? And I also have V=\sqrt{tension/(m/L)}
 
Mango12 said:
M is mass and L is length of the string...unless you know a different formula? And I also have V=\sqrt{tension/(m/L)}

Isn't the mass dependent on the diameter? (Wondering)
 
I like Serena said:
Isn't the mass dependent on the diameter? (Wondering)

I'm not sure, what to do with this, but I just need Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal? I feel like tension cancels out somewhere?
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
16K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K