Sounds waves and guitar strings

Click For Summary
SUMMARY

The discussion focuses on calculating the properties of guitar strings, specifically the G and D strings, based on their frequencies and physical dimensions. The frequency of the G string is 196Hz, and the amplitude of vibration is 2.2mm. The period (T) of the G string was successfully calculated, while the side-to-side velocity and the diameter of the D string, given equal tension with the A string (diameter 0.229mm), remain unresolved. Key formulas mentioned include V = √(tension/(m/L)) and f = 1/2√(tension/ML).

PREREQUISITES
  • Understanding of wave mechanics and simple harmonic motion
  • Familiarity with guitar string physics and tension calculations
  • Knowledge of frequency, wavelength, and amplitude relationships
  • Basic algebra and manipulation of formulas related to tension and mass
NEXT STEPS
  • Research the relationship between string diameter and mass per unit length (ML) in string instruments
  • Learn how to calculate the side-to-side velocity of vibrating strings using V = √(tension/(m/L))
  • Explore the impact of string tension on frequency and vibration characteristics
  • Investigate the formulas for calculating the diameter of strings under equal tension conditions
USEFUL FOR

Musicians, guitar builders, physics students, and anyone interested in the acoustics of string instruments will benefit from this discussion.

Mango12
Messages
48
Reaction score
0
C=130Hz
G=196Hz
D=293Hz
A=440 Hz

The distance from the nut to the bridge is 58cm, the amplitude of the string vibration is 2.2mm

Part A: What is the period (T) of the G string?
Part B: What is the side to side velocity of the g string? (Think simple harmonic motion)
Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal?

I don't really know how to approach this, and any help would be appreciated. Thank you.
 
Mathematics news on Phys.org
Mango12 said:
C=130Hz
G=196Hz
D=293Hz
A=440 Hz

The distance from the nut to the bridge is 58cm, the amplitude of the string vibration is 2.2mm

Part A: What is the period (T) of the G string?
Part B: What is the side to side velocity of the g string? (Think simple harmonic motion)
Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal?

I don't really know how to approach this, and any help would be appreciated. Thank you.
UPDATE: I figured out how to do part A, but I still need help with part B and C
 
Mango12 said:
C=130Hz
G=196Hz
D=293Hz
A=440 Hz

The distance from the nut to the bridge is 58cm, the amplitude of the string vibration is 2.2mm

Part A: What is the period (T) of the G string?
Part B: What is the side to side velocity of the g string? (Think simple harmonic motion)
Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal?

I don't really know how to approach this, and any help would be appreciated. Thank you.

Hi Mango12! ;)

B. The length of the string corresponds to half of the wave length, which is how it vibrates.
C. Do you have a formula that includes the diameter of the string?
 
I like Serena said:
Hi Mango12! ;)

B. The length of the string corresponds to half of the wave length, which is how it vibrates.
C. Do you have a formula that includes the diameter of the string?

I figured out part B, but now I just have to do C.

I don't have any formulas with diameter in them. The only formula I have relating to tension is f=1/2\sqrt{tension/ML}
 
Mango12 said:
I figured out part B, but now I just have to do C.

I don't have any formulas with diameter in them. The only formula I have relating to tension is f=1/2\sqrt{tension/ML}

What is ML?
 
M is mass and L is length of the string...unless you know a different formula? And I also have V=\sqrt{tension/(m/L)}
 
Mango12 said:
M is mass and L is length of the string...unless you know a different formula? And I also have V=\sqrt{tension/(m/L)}

Isn't the mass dependent on the diameter? (Wondering)
 
I like Serena said:
Isn't the mass dependent on the diameter? (Wondering)

I'm not sure, what to do with this, but I just need Part C: The diameter of the A string is 0.229mm. What is the diameter of the D string if the tension of both string must be equal? I feel like tension cancels out somewhere?
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
16K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K