Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Spacetime Interval in non-inertial frames.

  1. Jan 15, 2012 #1
    The interval between two events ds^2 = -(cdt)^2 + x^2 + y^2 + z^2 is invariant in inertial frames. I was wondering, if this same interval still applies and is invariant in non-inertial frames?
  2. jcsd
  3. Jan 15, 2012 #2


    User Avatar
    Gold Member

    The form of the line element will be the same if the coords (t,x,y,z) are transformed by a member of the Poincare group of transformations.

    But other transformations can change the form of the line element. For instance if we go to (u,v,y,z)

    u = x-t
    v= x+t

    then the line element becomes ds2 = -2dudv + dy2 + dz2
  4. Jan 15, 2012 #3


    User Avatar
    Science Advisor
    Gold Member

    There is still an invariant interval, but it will no longer take that form in a non-inertial frame.
  5. Jan 15, 2012 #4


    User Avatar
    Staff Emeritus
    Science Advisor

    In general the invariant interval will be a quadratic form ,http://en.wikipedia.org/w/index.php?title=Quadratic_form&oldid=467500079.

    If your generalized coordinates are t,x,y,z and you have to points, represented by coordinates t1,x1,y1,z1 and t2,x2,y2,z2, then your quadratic form for the interval will have variables dt,dx,dy,dz -- where dt = t2-t1, dx=x2-x1, dy=y2-y1, dz=z2-z1. For example, it might be (just to illustrate the concept clearly)

    -0.8 dt^2 + 1.3 dx^2 + 1.2 dy^2 + 1.1 dz^2

    The coefficents of the quadratic form can be represented by a matrix - the wiki article talks a bit about this - if you want a more detailed treatment it should be covered in books about linear algebra. This matrix is called the "metric", which hopefully you've at least herad mentioned.
  6. Jan 15, 2012 #5
    Your question has really been answered, so sorry if some think this is over kill, but I'll write down the interval for you too, since it hasn't been written yet in this thread, just mentioned.
    c^2 \, d\tau^2=ds^2=g_{\alpha\beta}dx^{\alpha}dx^{\beta}=dx_{\alpha}dx^{\alpha}
    This is a geometric invariant. Hope this helps a little.
  7. Jan 16, 2012 #6
    Thanks for the feedback. I know a bit about the metric tensor, it is a bilinear form that takes two vectors from the tangent space of our spacetime to a scalar, i think.

    So i think im correct in saying the 4x4 matrix representing the metric is the same on all points in flat spacetime (minkowski space).

    I haven't read much into GR yet, but in the general spacetime, does the metric tensor change at each point in the space?
  8. Jan 16, 2012 #7


    User Avatar
    Science Advisor
    Gold Member

    In general, the metric tensor will change as you move from point to point in space-time. If the metric tensor does not change as you move along a certain vector field, then that vector field is a so-called "killing vector field".
  9. Jan 16, 2012 #8


    Staff: Mentor

    Yes, except that you need to specify that you are talking about an inertial frame or orthonormal basis. The components of the metric expressed in e.g. a rotating frame will not be the same at all points in flat spacetime.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook