Spacetime translations and general Lagrangian density for Field Theory

AI Thread Summary
The discussion centers on the variation of the Lagrangian density under spacetime translations in field theory, referencing Sydney Coleman's lectures. The calculations presented lead to confusion regarding the terms in the variation of the Lagrangian, particularly the treatment of derivatives and the conditions under which certain terms vanish. It is clarified that the first term in the variation can be zero due to the equations of motion, and that the Lagrangian's lack of explicit spacetime dependence does not negate the existence of its total derivative. The conversation emphasizes the distinction between off-shell and on-shell variations, with the latter relying on the equations of motion. Overall, the participants seek clarity on the implications of these variations and the conditions under which specific terms are considered zero.
Paulpaulpa
Messages
6
Reaction score
2
Homework Statement
Find the variation of a general Lagrangian density, independent of spacetime coordinates, under a translation in space time.
Relevant Equations
The space time translation 4-vector is ##e^{\mu}## and we have ##\frac{\partial \mathcal{L}}{\partial x}=0## with ##\mathcal{L}## the Lagrangian density
In Sydney Coleman Lectures on Quantum field Theory (p48), he finds : $$D\mathcal{L} = e^{\mu} \partial _{\mu} \mathcal{L}$$

My calulation, with ##\phi## my field and the variation of the field under space time tranlation ##D\phi = e^{\mu} \frac{\partial \phi}{\partial x^{\mu}}## :

$$D\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi}D\phi + \frac{\partial \mathcal{L}}{\partial \partial _{\nu} \phi} \partial _{\nu} D\phi$$

Then using the Euler Lagrange equations ##
\frac{\partial\mathcal{L}}{\partial\phi}=\partial_\mu
\left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\right)##

I find $$D\mathcal{L} =
\partial_\mu
\left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\right)
D\phi + \frac{\partial \mathcal{L}}{\partial \partial _{\nu} \phi} \partial _{\nu} D\phi$$

Then using the fact that ## \partial _{\mu} (ab) = \partial _{\mu} (a)b + a\partial _{\mu} (b)##

$$D\mathcal{L} = \partial _{\nu} (\frac{\partial \mathcal{L}}{\partial \partial _{\nu} \phi} D\phi)$$

I don't understand where I am wrong. Moreover how can ##\partial _{\mu} \mathcal{L}## be any different than zero since the lagrangian doesn't depend explicitely on spacetime ?
 
Last edited:
Physics news on Phys.org
$$\delta L = \frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi)$$
As you pointed, first term is zero
$$\delta L = \frac{\partial L}{\partial (\partial_{\mu} \phi)} (\partial_{\mu} \delta \phi)$$
$$\delta \phi = e^{\mu} \frac{\partial \phi}{\partial x^{\mu}}$$

$$\delta L = \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\mu} (e^{\mu}{\partial_{\mu} \phi}) = e^{\mu} \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\mu}{\partial_{\mu} \phi} = e^{\mu} \partial_{\mu} L$$

I used chain rule.
 
LCSphysicist said:
$$\delta L = \frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi)$$
As you pointed, first term is zero
$$\delta L = \frac{\partial L}{\partial (\partial_{\mu} \phi)} (\partial_{\mu} \delta \phi)$$
$$\delta \phi = e^{\mu} \frac{\partial \phi}{\partial x^{\mu}}$$

$$\delta L = \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\mu} (e^{\mu}{\partial_{\mu} \phi}) = e^{\mu} \frac{\partial L}{\partial (\partial_{\mu} \phi)} \partial_{\mu}{\partial_{\mu} \phi} = e^{\mu} \partial_{\mu} L$$

I used chain rule.
Thanks for you answer. The first term is zero because of the equation of motion and the fact that
##\partial_\mu
\left(\frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\right)
= 0 ## since ##\mathcal{L}## do not depend on x. Is that right ? But why is ##\partial_\mu \mathcal{L}## different than zero ? ##\mathcal{L}## is supposed to be independant of x. Or should I interpret ##\partial _{\mu} \mathcal{L}## as a total derivative and not a partial one ?
 
Paulpaulpa said:
I don't understand where I am wrong. Moreover how can ##\partial _{\mu} \mathcal{L}## be any different than zero since the lagrangian doesn't depend explicitely on spacetime ?

1) \partial_{\nu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial x^{\nu}}|_{\phi , \partial \phi} + \frac{\partial \mathcal{L}}{\partial \phi}\partial_{\nu}\phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu}\phi}\partial_{\nu}\partial_{\mu}\phi . The first term on the RHS vanishes when \mathcal{L} has no explicit dependence on x^{\mu}.

2) Don’t use the equation of motion when you want to find the change in the Lagrangian under a specific (given) transformation of the coordinates. Under infinitesimal translation, x \to x - e, the field changes according to \delta \phi = e^{\nu}\partial_{\nu}\phi . This induces the following (infinitesimal) change in the Lagrangian: \delta \mathcal{L} = e^{\nu} \left(\frac{\partial \mathcal{L}}{\partial \phi}\partial_{\nu}\phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu}\phi}\partial_{\nu}\partial_{\mu}\phi \right) . Since \mathcal{L} does not depend (explicitly) on x, the above is written as \delta \mathcal{L} = e^{\mu}\partial_{\mu}\mathcal{L} . \ \ \ \ \ \ (2) This is called “off-shell” change in the Lagrangian, meaning that Eq(2) has been obtained without using the equation of motion.

3) An arbitrary (infinitesimal) change in the field \delta \phi induces the following infinitesimal change in the Lagrangian: \delta \mathcal{L} = \left[ \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \right) \right] \delta \phi + \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta \phi \right) . When you use the equation of motion, you get the so-called “on-shell” change in the Lagrangian: \delta \mathcal{L} = \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \delta \phi \right) . \ \ \ \ \ \ \ \ \ (3)

4) In this method, the (Noether) symmetry current is obtained by equating the off-shell variation Eq(2) with the on-shell variation Eq(3) with \delta \phi = e^{\nu}\partial_{\nu}\phi: \partial_{\mu} \left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi )} \partial_{\nu}\phi - \delta^{\mu}_{\nu} \mathcal{L} \right) = 0 .
 
  • Like
Likes TSny, JD_PM, Paulpaulpa and 1 other person
samalkhaiat said:
1) \partial_{\nu}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial x^{\nu}}|_{\phi , \partial \phi} + \frac{\partial \mathcal{L}}{\partial \phi}\partial_{\nu}\phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu}\phi}\partial_{\nu}\partial_{\mu}\phi . The first term on the RHS vanishes when \mathcal{L} has no explicit dependence on x^{\mu}.
Thank you very much this is much more clear. I always noted total derivative ##d \mathcal{L}## so the ##\partial _{\nu}\mathcal{L}## confused me a lot. Your explanation of Noether's Current is more understandable than the one in my lecture.
 
Last edited:
LCSphysicist said:
$$\delta L = \frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi)$$
As you pointed, first term is zero
$$\delta L = \frac{\partial L}{\partial (\partial_{\mu} \phi)} (\partial_{\mu} \delta \phi)$$
$$\delta \phi = e^{\mu} \frac{\partial \phi}{\partial x^{\mu}}$$

I used chain rule.

Where was the first term shown to be 0 / why would it be 0, this seems incorrect...?

I get your second reply specifying the off-shell condition but I do not see where you showed that ##\frac{\partial L}{\partial \phi} \delta \phi= 0##
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top