Special relativity and acceleration

AI Thread Summary
The discussion focuses on the analysis of a uniformly accelerated particle along the x-axis in the context of special relativity. The particle's acceleration is constant in its instantaneous rest frame, leading to the equations for position and time as functions of proper time. Transformations to the lab frame are applied using Lorentz transformations, but there are concerns about the accuracy of the derived equations. Participants highlight the importance of correctly applying the principles of special relativity, especially when the particle's velocity is not zero. The need for a reevaluation of the approach is emphasized, particularly regarding the integration of velocity and the validity of the equations in different frames.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
N
Relevant Equations
N
A particle is moving along the x-axis. It is uniformly accelerated in the sense
that the acceleration measured in its instantaneous rest frame is always g, a constant.
Find x and t as functions of the proper time τ assuming the particle passes through
x0 at time t = 0 with zero velocity.I

n particle frame, the acceleration is constant and given by g.

So we have $$dv/d\tau = g \implies x = x_o + v_ot + g\tau^2/2$$
Using the initial conditions,$$ x = x_o + g\tau^2/2 $$

So now we have to transform it to the rest frame coordinates/lab frame.

$$\begin{pmatrix}
ct'\\x'

\end{pmatrix} = \begin{pmatrix}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{pmatrix}

\begin{pmatrix}
ct \\ x = x_o + g\tau^2/2

\end{pmatrix}$$

I am using beta instead of minus beta, because i am changing from a frame in motion to a frame in rest.

Now, assuming that $$(dv/dt) dt/d\tau = g \implies v= gt/\gamma$$
And so, $$\gamma = \sqrt{1+g^2t^2}$$
$$\beta = -gt/(c\gamma)$$

that implies $$t` = \sqrt{1+g^2t^2}(c\tau + \beta*( x_o + g\tau^2/2))/c$$
and $$x' = \sqrt{1+g^2t^2}(c \tau \beta +(x_o + g\tau^2/2))$$

But i am not sure about these results i get, i have the impression i am doing something wrong. Is it right?
 
Physics news on Phys.org
It might be helpful to see the form of the equations when \beta is small. (Correspondence principle.)
 
robphy said:
It might be helpful to see the form of the equations when \beta is small. (Correspondence principle.)
I think i could have had a mistake when i integrated the v, reading it again... But, i think what's matter more to me is if the approach is right. I mean, solve it using the proper time, and so changing to the rest frame using the inverse matrix transform, what do you think?
 
You only have ##dx/d\tau = g## instantaneously in any frame when the particle is at rest in that frame. As soon as the particle deviates from zero velocity in that frame, it is no longer valid. Therefore you willhave to rethink your approach.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...

Similar threads

Back
Top