Spectral Gap or Gapless Undecidable

  • Thread starter Thread starter .Scott
  • Start date Start date
  • Tags Tags
    Gap
.Scott
Science Advisor
Homework Helper
Messages
3,800
Reaction score
1,857
So there is a new paper.
Presented here: http://arxiv.org/pdf/1502.04135.pdf
Published here: http://www.nature.com/nature/journal/v528/n7581/full/nature16059.html
And broadly described here: http://phys.org/news/2015-12-quantum-physics-problem-unsolvable-godel.html

Here is an excerpt from the abstract:
These problems are all particular cases of the general spectral gap problem: Given a quantum many-body Hamiltonian, is the system it describes gapped or gapless? Here we show that this problem is undecidable, in the same sense as the Halting Problem was proven to be undecidable by Turing.6 A consequence of this is that the spectral gap of certain quantum many-body Hamiltonians is not determined by the axioms of mathematics, much as Godels incompleteness theorem implies ¨ that certain theorems are mathematically unprovable.

This suggests that there may be cases where you can experimentally determine whether there is a gap, but that, in theory, there is no way to determine this through analysis.

Is this true, and are there actual examples? For example, is there a specific superconductor that:
- relies on no spectral gap
- where there is enough known about its structure where a computation can be attempted
- but the computation is demonstrably undecidable.

??
 
Last edited by a moderator:
  • Like
Likes marcus, mfb and atyy
Physics news on Phys.org
.Scott said:
This suggests that there may be cases where you can experimentally determine whether there is a gap, but that, in theory, there is no way to determine this through analysis.

No it doesn't. The undecidability applies to solving the problem on an unbounded grid. You won't be able to perform such an experiment for obvious practical reasons.

Furthermore, note that quantum mechanics is not required for creating undecidable problems. Classical mechanics also allows for objects with undecidable properties (given unbounded space). We call them computers.
 
Last edited:
  • Like
Likes mfb, atyy and .Scott
Strilanc said:
.Scott said:
This suggests that there may be cases where you can experimentally determine whether there is a gap, but that, in theory, there is no way to determine this through analysis.
No it doesn't. The undecidability applies to solving the problem on an infinite grid. You won't be able to perform such an experiment for obvious practical reasons.

Furthermore, note that quantum mechanics is not required for creating undecidable problems. Classical mechanics also allows for widgets with undecidable properties (given unbounded space). They have a complicated name... what was it...? Oh yeah, computers.
The potential difference between the ones related to computers and the ones that might be related to physical events is that on the computers, they are left unsolved. But if they affected physical events, the universe wouldn't just stop when it gets to one of these problems.

Actually, the last statement in that phys.org article (http://phys.org/news/2015-12-quantum-physics-problem-unsolvable-godel.html) suggests that no such case has been found:
The researchers are now seeing whether their findings extend beyond the artificial mathematical models produced by their calculations to more realistic quantum materials that could be realized in the laboratory.

You don't sound optimistic about their success in that venture.
 
Last edited:
.Scott said:
The potential difference between the ones related to computers and the ones that might be related to physical events is that one the computers, they are left unsolved. But if they affected physical events, the universe wouldn't just stop when it got to one of these problems.

In their problem, they're trying to figure out if adding more lattice sites will cause the problem instance to become gapped. Alternatively, it might stay gapless forever. They proved that this question is undecidable.

For a problem that does eventually have a gap, you will eventually figure out that it in fact has a gap by working your way through larger and larger lattices. But for a problem that stays gapless, you're forever left in limbo. No matter how large of a lattice you check, you don't become sure that an even larger lattice won't work. And because the problem is undecidable, you won't always be able to find a proof that there is no sufficiently large lattice.

Ok, now the exact same wording but for the halting problem!

In the halting problem, you're trying to figure out if running a program for more steps will cause it to halt. Alternatively, the program may never halt. Turing proved that this question is undecidable.

For any program that does halt, you will eventually figure out that it in fact halts by running more and more steps. Even for programs that run for a very VERY long time. But for a program that doesn't halt, you're forever left in limbo. No matter how long you simulate it, you don't become sure that just a few more steps won't make the program halt. And because the problem is undecidable, you won't always be able to find a proof that the program doesn't halt.

See the similarity now?

It's not that we wouldn't be able to recognize that there's a gap in a given system, it's that we're never sure if we have to keep trying more and more systems or not. Doing experiments doesn't fix this problem, it just makes it physical instead of symbolic. You still find yourself trying larger and larger instances unsure of when to stop.

.Scott said:
Actually, the last statement in that phys.org article (http://phys.org/news/2015-12-quantum-physics-problem-unsolvable-godel.html) suggests that no such case has been found:

You don't sound optimistic about their success in that venture.

I don't see any problem with using the understanding that programs can be sort of encoded into lattices to find new and interesting substances. The researchers won't be able to solve the halting problem with what they make, but that doesn't mean what they make can't be useful or revolutionary.
 
  • Like
Likes maline, UncertaintyAjay and .Scott
Strilanc said:
Ok, now the exact same wording but for the halting problem!
...
See the similarity now?
I saw the similarity from the start. I have been familiar with the computer halting problem for years or decades.

But what you're adding is that their halting problem only relates to one analytical method of determining whether there is a gap - specifically the method based on a grid. So, from what I now understand, they didn't show that the fundamental gap problem is beyond analysis - only that it is beyond a particular analytic approach.

Is that right?
 
I'm pretty sure the undecidability applies to any method of analysis and any experimental method. Otherwise we'd have a clear practical counter example to the Church-Turing thesis and it would be GIGANTIC news. Did you have some method in mind?
 
Strilanc said:
I'm pretty sure the undecidability applies to any method of analysis and any experimental method. Otherwise we'd have a clear practical counter example to the Church-Turing thesis and it would be GIGANTIC news. Did you have some method in mind?
No. I was just trying to interpret what you said.
So they are not examining a realistic situation?
 
Most physicists are not very much familiar with the concepts such as undecidability, halting problem, and Godel theorems. So let me try to explain the meaning of this result in (my own) simple terms.

Consider the following SF scenario. In the far far future, Wolfram releases a highly advanced version of Mathematica (say, Mathematica 100.0.0) with the following function:
When you input parameters for an arbitrary infinite-size Hamiltonian, for any such input (however pathological it might be), Mathematica, after some finite time of processing, gives you the output YES or NO, telling you whether the Hamiltonian has or has not the spectral gap.

No doubt, it would be very difficult to make such a program in Mathematica. But would it be possible at least in principle? The theorem proved in the paper in Nature shows that such a program is impossible even in principle.

However, it is not really such a negative result as it might look.

The theorem does not exclude a possibility to make a program which will work for most cases, and only fail for some pathological cases, for which the program will fall into an infinite loop. All what theorem proves is that such pathological cases exist. It is quite possible that neither of the physically interesting cases is pathological in that sense.

Moreover, even for such pathological cases, it does not mean that a good mathematician cannot determine whether it has a gap or not. Given a particular pathological case, a creative mathematician can create a special method, working only for this special case, to determine whether it has gap or not.

Furthermore, it is possible to have two (or more) different algoritms, called A1 and A2, which fail for different cases. So if A1 fails in some case of interest, it may be that A2 works for that case. A2, however, will fail in some other case, for which A1 may work well.

To summarize, all what the theorem says is that there is no one algorithm by which machine can determine (whether there is a gap or not) for any possible input (Hamiltonian).

I hope it helps to clarify the mathematical and physical (in)significance of the result.
 
Last edited:
  • Like
Likes marcus, fedaykin, nrqed and 3 others
Thanks Demystifier. You have lived up to your name!
 
  • Like
Likes Demystifier
  • #10
Demystifier said:
Moreover, even for such pathological cases, it does not mean that a good mathematician cannot determine whether it has a gap or not. Given a particular pathological case, a creative mathematician can create a special method, working only for this special case, to determine whether it has gap or not.

Furthermore, it is possible to have two (or more) different algoritms, called A1 and A2, which fail for different cases. So if A1 fails in some case of interest, it may be that A2 works for that case. A2, however, will fail in some other case, for which A1 may work well.

To summarize, all what the theorem says is that there is no one algorithm by which machine can determine (whether there is a gap or not) for any possible input (Hamiltonian).

The rest of your answer is good, but this part is a bit misleading. There are two important clarifications to make:

1. The combination of two algorithms is also an algorithm, and so must fail to solve some cases. You can't put together a team of algorithms that cover all the holes; there's always more holes.

2. A creative mathematician is also subject to the obstacles of undecidability (... depending on your philosophy). For example, they have to ground their proof of gapped-vs-gapless in an axiomatic system such as ZFC, but "iterate over all proofs and stop when you've shown X or not-X in ZFC" is an algorithm that would find such a proof. Because the problem is undecidable, that algorithm must fail for some cases; there may simply be no proof either way. So the creative mathematician would also fail, unless they're willing and able to introduce more and more new axioms. (Secondarily, given the presumption that physics is computable [i.e. the Church-Turing thesis] and that mathematicians are embedded in physics, mathematicians must fail on some instances of uncomputable problems.)
 
  • Like
Likes atyy
  • #11
I have little real knowledge of Gödel theory, but if I recall it correctly if was not as harsh as commonly stated. The "proofs" the theorem talks about does not encompass all the ways to prove a given statement in an axiomatic system.
 
  • #12
Strilanc said:
2. A creative mathematician is also subject to the obstacles of undecidability (... depending on your philosophy). For example, they have to ground their proof of gapped-vs-gapless in an axiomatic system such as ZFC, but "iterate over all proofs and stop when you've shown X or not-X in ZFC" is an algorithm that would find such a proof.
I don't understand this part. To me, generating proofs is not enough. They also have to be checked if they work or not. Maybe algorithms can't do it in general (assuming Church-Turing is false).
 
  • #13
ddd123 said:
I don't understand this part. To me, generating proofs is not enough. They also have to be checked if they work or not. Maybe algorithms can't do it in general (assuming Church-Turing is false).

Sorry if that was unclear. I intended for checking that the proof was correct to be implied in "stop when you've shown it". Proofs are defined (or can be defined) in a way that's easy for machines to check, so that's not a problem.

Generally speaking, the hard creative part of math is considered to be the finding of proofs as opposed to the checking of proofs. And when we're only worried about computability, instead of time complexity, simply iterating through all proofs is viable.
 
  • #14
andresB said:
I have little real knowledge of Gödel theory, but if I recall it correctly if was not as harsh as commonly stated. The "proofs" the theorem talks about does not encompass all the ways to prove a given statement in an axiomatic system.

No, it includes all possible proofs. To avoid undecidability you either need to stick to very trivial systems that don't allow a Turing machine to be encoded, or you need to keep introducing new ad hoc axioms magically whenever you encounter the next undecidable proposition.
 
Last edited:
  • #15
Scott Aaronson, a well-known computational complexity theorist and blogger, has written a post about the paper:

it’s now my professional duty [...] to end the post by shooing you away from two tempting misinterpretations of the Cubitt et al. result [...]

[...] the result does not say—or even suggest—that there’s any real, finite physical system whose behavior is Gödel- or Turing-undecidable. Thus, it gives no support to speculations like Roger Penrose’s, about “hypercomputing” that would exceed the capabilities of Turing machines. The reason, again, is that as soon as you fix a lattice size L, everything becomes computable. The Cubitt et al. result applies only to questions about the limiting behavior, as the number of particles goes to infinity. But we already knew lots of examples of physical systems for which predicting their behavior in some infinite limit is at least as hard as the halting problem: for instance, the Wang tiles discussed earlier, or Post rewrite systems, or even Turing machines themselves. Local Hamiltonians are a profound, nontrivial addition to that list—one that will be particularly striking to physicists, many of whom calculate the spectral gaps of at least 50 Hamiltonians between dinner and dessert. But in some sense, there was no a-priori reason why a problem this general, about physical systems of unbounded size, ought to have been computable.
 
  • Like
Likes Demystifier
  • #16
It's worth noting that even though the halting problem is provably undecidable, it is still possible in principle to construct pseudo halting oracles which examine computer programs which do not exceed some fixed size. Essentially they examine programs with an upper memory limit, of which there are only a finite amount, and in principle can examine all such programs, keep track of their states as they go and flag any which return to a previous state without looping as non-halting. This leads to the concept of busy-beaver functions and non-computability, which are a great way to spend an afternoon.
 
  • #17
Strilanc said:
No, it includes all possible proofs. To avoid undecidability you either need to stick to very trivial systems that don't allow a Turing machine to be encoded, or you need to keep introducing new ad hoc axioms magically whenever you encounter the next undecidable proposition.
I mean, yes it denies all possible possible proof working within the theory but that was not the only ways to see if a proposition was true or false, or at least that is what I remember about the issue.
 
  • #18
Weddgyr said:
This leads to the concept of busy-beaver functions and non-computability, which are a great way to spend an afternoon.
But can you be sure that you stop after an afternoon?
scnr.We don't have to assume mathematicians are physical objects and that physical objects are computable: mathematicians produce proofs of finite length, something a conventional algorithm can do as well. So while mathematicians might be able to solve more problems than Mathematica 100, there are always cases where they won't work.
 
  • Like
Likes Demystifier
  • #19
andresB said:
I mean, yes it denies all possible possible proof working within the theory but that was not the only ways to see if a proposition was true or false, or at least that is what I remember about the issue.
Yes this is more or less what I had in mind. There's just something that is off with that argument for me, but I don't have enough knowledge on the topic to see if it's just my blunder or not.
 
  • #20
I'm trying to follow this thread and read the paper. But what is the fundamental relevance of critical quantum systems? Low temperature superconductors and sonons in crystals aside, are critical quantum systems considered to be possible descriptions of how a LQG spin foam becomes a fundamental particle or how a collection of some of those particles become a nucleus or am I totally misinterpreting that? It seems like the condensed matter angle is reckoning with core problems but I'm not sure I see the connection to the general case.

Also, if there was no spectral gap... or there weren't always some gaps somewhere wouldn't everything just be one big crystal or wave by now?
 
Last edited:
  • #21
Strilanc said:
The rest of your answer is good, but this part is a bit misleading. There are two important clarifications to make:

1. The combination of two algorithms is also an algorithm, and so must fail to solve some cases. You can't put together a team of algorithms that cover all the holes; there's always more holes.

2. A creative mathematician is also subject to the obstacles of undecidability (... depending on your philosophy). For example, they have to ground their proof of gapped-vs-gapless in an axiomatic system such as ZFC, but "iterate over all proofs and stop when you've shown X or not-X in ZFC" is an algorithm that would find such a proof. Because the problem is undecidable, that algorithm must fail for some cases; there may simply be no proof either way. So the creative mathematician would also fail, unless they're willing and able to introduce more and more new axioms. (Secondarily, given the presumption that physics is computable [i.e. the Church-Turing thesis] and that mathematicians are embedded in physics, mathematicians must fail on some instances of uncomputable problems.)
These are very important and subtle issues that needed to be discussed carefully. So let me explain why do I still disagree, but feel free to criticize me if I missed something.

1. A combination of two algorithms is not an algorithm, if it is a mathematician (not a machine) that combines them. A creative mathematician may use his intuition (not an algorithm) to decide which algorithm to use when.

2. Undecidability does not always mean that you must add an infinite number of new axioms to make it "decidable".
a) For instance, the continuum problem is undecidable in ZFC theory, but you can make this problem decidable but adding only one new axiom. (The problem is that mathematician cannot agree which new axiom would look sufficiently obvious.)
b) Even more creative idea is to remove some standard axioms and replace them with new ones. In this way Tarski has shown that it is possible to make new axioms for real numbers (not containing Peano axioms among them) without leading to a Godel-like theorem.

Concerning the spectral gap problem, there is an important issue which I think was not addressed in the Nature paper. Given an algorithm, they have shown that it will work for same cases and fail for other cases. What they did not say is the following: Which set is larger; the set of cases in which it will fail, or the set of cases in which it will not? Does perhaps one of the sets has measure zero? Which one? Answering these questions would be very important for evaluating the practical implications of their theorem.
 
Last edited:
  • #22
Demystifier said:
These are very important and subtle issues that needed to be discussed carefully. So let me explain why do I still disagree, but feel free to criticize me if I missed something.

1. A combination of two algorithms is not an algorithm, if it is a mathematician (not a machine) that combines them. A creative mathematician may use his intuition (not an algorithm) to decide which algorithm to use when.

2. Undecidability does not always mean that you must add an infinite number of new axioms to make it "decidable".
a) For instance, the continuum problem is undecidable in ZFC theory, but you can make this problem decidable but adding only one new axiom.
b) Even more creative idea is to remove some standard axioms and replace them with new ones. In this way Tarski has shown that it is possible to make new axioms for real numbers (not containing Peano axioms among them) without leading to a Godel-like theorem.

For (1): Strictly speaking, a combination of two algorithms is guaranteed to be an algorithm. An algorithm is a sequence of steps that terminate after a finite time with a result. You can merge any finite number of algorithms into a single algorithm by dove-tailing through them. Even an infinite set of algorithms can be merged into a single algorithm by dove-tailing, as long as the set is recursively enumerable and we're guaranteed that at least one of the algorithms in the set will give an answer that allows us to stop.

Note that, in the case of deciding propositions, we can simply iterate through all possible proofs instead of through some complicated set of algorithms. To decide X we consider each possible proof in turn, check that its steps are valid, that it only uses the allowed axioms as preconditions, and that it concludes with X or with not-X. This works as long as X is not independent of the axioms. If there's a proof, this process finds it. If there is no proof, no process finds it; including mathematicians.

It might help if you give a concrete example of a mathematician doing something that a computational process can't. Intuition is certainly helpful in practice, but when it comes to raw computability/decidability you can always just substitute brute force. There's no need to save time by intuitively skipping to the correct answer when the rules effectively let you check all possible answers without penalty as long as one of them works. (And if none of them works, intuition was clearly also going to fail.)

For (2): I meant that to make every statement decidable you'd have to add more and more axioms, because there's always more holes. But I agree that removing/replacing axioms, and limiting your algorithm's input space to a decidable theory such as Presburger arithmetic, sidesteps the problem.
 
Last edited by a moderator:
  • #23
Strilanc said:
It might help if you give a concrete example of a mathematician doing something that a computational process can't.
1. Consider any consistent axiomatic system in which a statement of the form
"This statement cannot be proved within the system"
can be stated. A mathematician can see that this statement is true, yet a computational process (within the system) cannot prove it.

2. Constructing a useful axiomatic system (e.g. Peano axioms) itself. Mathematician can do it, algorithmic computational process can't.
 
  • #24
Demystifier said:
1. Consider any consistent axiomatic system in which a statement of the form
"This statement cannot be proved within the system"
can be stated. A mathematician can see that this statement is true, yet a computational process (within the system) cannot prove it.

2. Constructing a useful axiomatic system (e.g. Peano axioms) itself. Mathematician can do it, algorithmic computational process can't.

For (1), why are we limiting the computational process to work within the system but not the mathematician? That's like saying a mathematician can prove something for all natural numbers, but a computational process not allowed to use induction couldn't.

For (2) you need expand "useful". How does it relate to decidability and the problem in question?
 
  • #25
Strilanc said:
For (1), why are we limiting the computational process to work within the system but not the mathematician?
Because a computational process must work within the system by definition. On the other hand, we do not have such a precise definition of a mathematician.

Strilanc said:
That's like saying a mathematician can prove something for all natural numbers, but a computational process not allowed to use induction couldn't.
Not to prove, but to see that it is true. Mathematicians don't prove the Godel sentence, yet they see that it is true. (Perhaps it's not a fair analogy, but religious people, including some mathematicians, don't prove that God exists, yet they see that he does.)

Another example: Mathematicians don't prove that Peano axioms are consistent (the second Godel theorem proves that it is impossible to prove it), yet they are convinced that Peano axioms are consistent. They "see it" without a proof.

An even more interesting example: Mathematicians don't prove the axiom of choice, yet many of them (not all) see that it is true. They see it so vividly, that even the Banach-Tarski paradox cannot shake their vision of truth.

Strilanc said:
For (2) you need expand "useful". How does it relate to decidability and the problem in question?
My point is that mathematician (as any other human) can see that something is "obviously true", even though it is impossible to formally prove it. If such an "obviously true" statement can be put in a sufficiently precise form, then mathematicians like to call it "axiom".

The crucial question, which I have not tried to answer, is this: If, without a proof, all mathematicians see that something is true, does it mean that it is indeed true? That's a though question for philosophy of mathematics.
 
Last edited:
  • #26
If a mathematician can see that something is true, he should be able to write down a proof, otherwise the mathematician makes unverifiable claims. A computer program can write down and check the same proof.
A mathematician can be convinced of something that a computer cannot prove: sure. We are all convinced of many things without a formal proof, some of those things are wrong. That is religion, not mathematics. And computer programs can be "quite sure" of something without a formal proof as well.
 
  • #27
mfb said:
If a mathematician can see that something is true, he should be able to write down a proof, otherwise the mathematician makes unverifiable claims. A computer program can write down and check the same proof.
I agree. If a mathematician can prove it, a mathematician with the right skills can code it.
Problems that are, in principle, undecidable, usually have intermediate results that can expand to infinity. That is, the potential amount of information needed to solve them is not finite.
 
  • #28
Demystifier said:
Because a computational process must work within the system by definition. On the other hand, we do not have such a precise definition of a mathematician.Not to prove, but to see that it is true. Mathematicians don't prove the Godel sentence, yet they see that it is true. (Perhaps it's not a fair analogy, but religious people, including some mathematicians, don't prove that God exists, yet they see that he does.)

Another example: Mathematicians don't prove that Peano axioms are consistent (the second Godel theorem proves that it is impossible to prove it), yet they are convinced that Peano axioms are consistent. They "see it" without a proof.

An even more interesting example: Mathematicians don't prove the axiom of choice, yet many of them (not all) see that it is true. They see it so vividly, that even the Banach-Tarski paradox cannot shake their vision of truth.My point is that mathematician (as any other human) can see that something is "obviously true", even though it is impossible to formally prove it. If such an "obviously true" statement can be put in a sufficiently precise form, then mathematicians like to call it "axiom".

The crucial question, which I have not tried to answer, is this: If, without a proof, all mathematicians see that something is true, does it mean that it is indeed true? That's a though question for philosophy of mathematics.

I contend that "vividly seeing that it must be true" is an unreliable proof system. See: examples of common false beliefs in mathematics. Humans don't avoid Godel's incompleteness results, they firmly fall in the "inconsistent" category. For example, you say that mathematicians can clearly see that PA must be consistent... but did you realize that means PA + Not(Con(PA)), Peano arithmetic plus an assertion that Peano arithmetic is inconsistent, is also a consistent theory with a model?

Ultimately, when you write a proof-finding program, you decide what proofs are acceptable. If you see Godel sentences as obviously true, then add a rule to the program that Godel sentences are to be assumed true whenever encountered. Just don't make the mistake of assuming you're still working in ZFC. And don't be surprised when someone writes up a program that simulates your brain and iterates through feeding it every possible proof in order to mechanize any physically-grounded magical insight into whether statements are true or false.
 
  • Like
Likes Demystifier
  • #29
mfb said:
If a mathematician can see that something is true, he should be able to write down a proof, otherwise the mathematician makes unverifiable claims. A computer program can write down and check the same proof.
A mathematician can be convinced of something that a computer cannot prove: sure. We are all convinced of many things without a formal proof, some of those things are wrong. That is religion, not mathematics. And computer programs can be "quite sure" of something without a formal proof as well.
Then tell me about the consistency of Peano axioms!
Is it true? Can it be proved? Is it mathematics? Is it religion?

All other sciences make claims that cannot be strictly proved, and that doesn't make them religion. Mathematicians used to believe (and some still do) that mathematics is different, but after Godel it is becoming more and more accepted that such a belief is not completely justified. Mathematics too must occasionally make some claims which cannot be strictly proved.
 
Last edited:
  • #30
Anyway, whatever one thinks about those fascinating issues, it is interesting to see that foundations and philosophy of mathematics are starting to be relevant for physics. :smile:
 
  • #31
Strilanc said:
I contend that "vividly seeing that it must be true" is an unreliable proof system.
It certainly is. But sometimes we have nothing better to offer. However unreliable it might be, it is much more useful than I-know-nothing-so-I-will-tell-nothing attitude.
 
  • #32
Wow this is great discussion.
 
  • #33
Strilanc said:
If you see Godel sentences as obviously true, then add a rule to the program that Godel sentences are to be assumed true whenever encountered.
What the Godel theorem shows is that you cannot add such a rule. It is not possible to formalize the general idea that a sentence has a Godel form. Hence you can add such a rule for particular Godel-like sentences, but not for general Godel-like sentences. Some intuitive ideas cannot be formalized.
 
Last edited:
  • #34
Strilanc said:
And don't be surprised when someone writes up a program that simulates your brain and iterates through feeding it every possible proof in order to mechanize any physically-grounded magical insight into whether statements are true or false.
The Godel theorems (and the Tarski theorem about non-existence of consistent formal truth) do not forbid such a simulation. However, what these theorems seem to show, is that the resulting statements "true" and "false" will not satisfy the criterion of consistency. And that agrees with our everyday experience that even the most rational men are sometimes inconsistent in their claims.

This is like making a computer program which for any algorithm will tell whether it halts or not. Yes, it's possible, provided that you accept that sometimes what it tells is not true.
 
  • #35
Strilanc said:
For example, you say that mathematicians can clearly see that PA must be consistent... but did you realize that means PA + Not(Con(PA)), Peano arithmetic plus an assertion that Peano arithmetic is inconsistent, is also a consistent theory with a model?

But that doesn't create any problems for the belief of mathematicians that PA is consistent, does it?
 
  • Like
Likes Demystifier
  • #36
I'm kind of confused here, but I am starting to think this is irrelevant to me anyway. In my mind, if the universe and all its possible atomic variables could be defined completely by a set of axioms (a theory of everything in the universe which follows a simple set of rules that apply everywhere) then everything possible would be covered, albeit superdeterministic. Like the Turing machine it's only relevant for example if there are unknowns to possibly contend with, like groups of atoms possessing physics undefinable in the individual basis. I am expecting a TOE would explain everything from blackbody radiation to the Ultraviolet catastrophe to GRBs, so then this undecidable result would become inherently deterministic?
 
  • #37
Demystifier said:
A mathematician can be convinced of something that a computer cannot prove: sure. We are all convinced of many things without a formal proof, some of those things are wrong. That is religion, not mathematics.
All other sciences make claims that cannot be strictly proved, and that doesn't make them religion. Mathematicians used to believe (and some still do) that mathematics is different, but after Godel it is becoming more and more accepted that such a belief is not completely justified. Mathematics too must occasionally make some claims which cannot be strictly proved.
All other sciences don't claim that things are certainly right, not even under some given axioms. They make observations and models and statements like "observation A is consistent with model Y but inconsistent with model Z". That is neither mathematics nor religion.

Mathematicians can say "all things we tried so far do not violate the axiom of choice" - and a computer algorithm can make the same statement.
 
  • #38
mfb said:
All other sciences don't claim that things are certainly right, not even under some given axioms. They make observations and models and statements like "observation A is consistent with model Y but inconsistent with model Z". That is neither mathematics nor religion.

Mathematicians can say "all things we tried so far do not violate the axiom of choice" - and a computer algorithm can make the same statement.

Is it consistent with the Undecidability of the Halting Problem to say it takes a mathematician to tell that computer whether or not it is then done - since it can't tell the un-violated axiom of choice from the point of truth?
:smile:

Or is your point that neither the mathematician nor the computer can know when to halt?

Seriously, I don't quite get the Halting Problem...

I would love it if someone just explained a bit more the way the proof in the paper works. It's like they say - start with something undecidable, add it to something (decideable?) and you will always get... something undecidable. Clearly I'm missing it.
 
Last edited:
  • #39
.Scott said:
So there is a new paper.
Presented here: http://arxiv.org/pdf/1502.04135.pdf
Published here: http://www.nature.com/nature/journal/v528/n7581/full/nature16059.html
And broadly described here: http://phys.org/news/2015-12-quantum-physics-problem-unsolvable-godel.html

Here is an excerpt from the abstract:

This suggests that there may be cases where you can experimentally determine whether there is a gap, but that, in theory, there is no way to determine this through analysis.

Is this true, and are there actual examples? For example, is there a specific superconductor that:
- relies on no spectral gap
- where there is enough known about its structure where a computation can be attempted
- but the computation is demonstrably undecidable.

??

Whether or not a gap appears depends on the size of the lattice. It is not possible to test lattices of all sizes, so the general answer will never be known.

But if you are building a particular system, all you care about is that a particular range of system sizes. So gaplessness can be decided by experiment for all practical purposes. If you can build a simulation as large as the actual system will be, then you can rely on that too.
 
Last edited by a moderator:
  • #40
Hornbein said:
But if you are building a particular system, all you care about is that a particular range of system sizes. So gaplessness can be decided by experiment for all practical purposes. If you can build a simulation as large as the actual system will be, then you can rely on that too.
My interest goes beyond the practicalities of finding superconductors and such. It seems impossible that something in nature could reveal the answer to something that is "undecidable" because "undecidable" is generally taken to be the final word on these math problems. If there is such a case that can be casted as undecidable and then determined through physical experiment, it would be a very interesting mathematical as well as physical revelation.
 
  • #41
.Scott said:
My interest goes beyond the practicalities of finding superconductors and such. It seems impossible that something in nature could reveal the answer to something that is "undecidable" because "undecidable" is generally taken to be the final word on these math problems. If there is such a case that can be casted as undecidable and then determined through physical experiment, it would be a very interesting mathematical as well as physical revelation.
For any given specific and finite problem a solution can be found.
 
  • #42
.Scott said:
My interest goes beyond the practicalities of finding superconductors and such. It seems impossible that something in nature could reveal the answer to something that is "undecidable" because "undecidable" is generally taken to be the final word on these math problems. If there is such a case that can be casted as undecidable and then determined through physical experiment, it would be a very interesting mathematical as well as physical revelation.
Quite so. The article also mentioned that some regions were chaotic, but that's nothing new.

Did you know that Diophantine equations are undecidable?
 
  • #43
Via the Feynman path integral, isn't there a correspondence between quantum mechanics and classical statistical mechanics? So there is a counterpart of this undecidability in the thermodynamic limit of classical statistical mechanics also?
 
  • Like
Likes Demystifier
  • #44
Strilanc said:
but did you realize that means PA + Not(Con(PA)), Peano arithmetic plus an assertion that Peano arithmetic is inconsistent, is also a consistent theory with a model?
That's fascinating. First I couldn't believe it, then, after a careful reading of the paper (which is really great) I concluded that it is true but very very strange, and finally, after more thought, I concluded that it is in fact very simple, almost trivial.

To explain why is it almost trivial let me give a really trivial example with very similar properties:

Instead of PA, consider a much simpler axiomatic system called T (for Trivial), with only one axiom:
The axiom: 1+1=2

This is really a very weak axiomatic system. From this axiom you cannot determine that 1+1+1=3, you cannot determine that 2-1=1, you cannot determine anything, except that 1+1=2. This system looks like a parrot which repeats only one sentence without understanding its meaning.

Is this system consistent? Of course it is, you cannot obtain any inconsistency from it. But can its consistency be proved within the system? Of course it can't. The system is so weak that it can't prove anything (except that 1+1=2).

Good! Now consider the extended axiom system T + Not(Con(T)), i.e. the trivial system plus an assertion that the trivial system is inconsistent. Is it consistent? Of course it is; by using only those two axioms, you cannot derive any inconsistency. But can its consistency be proved within the system? Of course not; the system is still too weak for such a proof.
 
  • #45
Demystifier said:
That's fascinating. First I couldn't believe it, then, after a careful reading of the paper (which is really great) I concluded that it is true but very very strange, and finally, after more thought, I concluded that it is in fact very simple, almost trivial.

To explain why is it almost trivial let me give a really trivial example with very similar properties:

Instead of PA, consider a much simpler axiomatic system called T (for Trivial), with only one axiom:
The axiom: 1+1=2

This is really a very weak axiomatic system. From this axiom you cannot determine that 1+1+1=3, you cannot determine that 2-1=1, you cannot determine anything, except that 1+1=2. This system looks like a parrot which repeats only one sentence without understanding its meaning.

Is this system consistent? Of course it is, you cannot obtain any inconsistency from it. But can its consistency be proved within the system? Of course it can't. The system is so weak that it can't prove anything (except that 1+1=2).

Good! Now consider the extended axiom system T + Not(Con(T)), i.e. the trivial system plus an assertion that the trivial system is inconsistent. Is it consistent? Of course it is; by using only those two axioms, you cannot derive any inconsistency. But can its consistency be proved within the system? Of course not; the system is still too weak for such a proof.

Perhaps an easier way to think about it is that the Goedel sentences are formal syntactic constructions, so they do not necessarily mean "consistent" or "not consistent" in general. If we believe PA is consistent, and the definition of Goedelian incompleteness means that the Goedel sentence and its negation can be added to PA to yield another consistent system, then it means that if the Goedel sentence ("Con(T)") is added to PA, the extended system has an interpretation as the "standard model of arithmetic". But if the negation ("Not(Con(T))") is added to PA, then the extended system has an interpretation as a "nonstandard model of arithmetic". http://web.mat.bham.ac.uk/R.W.Kaye/papers/arithhis.pdf
 
  • #46
atyy said:
Perhaps an easier way to think about it is that the Goedel sentences are formal syntactic constructions, so they do not necessarily mean "consistent" or "not consistent" in general.
I see what you mean, but sentences claiming that something is consistent or not consistent are not called Godel sentences. A typical Godel sentence claims that this very sentence is not provable.

atyy said:
the Goedel sentence and its negation can be added to PA to yield another consistent system,
I guess you meant "the Goedel sentence or its negation".

atyy said:
sentence ("Con(T)") is added to PA
I guess you meant "Con(PA)", not "Con(T)".
 
  • #47
Demystifier said:
I see what you mean, but sentences claiming that something is consistent or not consistent are not called Godel sentences. A typical Godel sentence claims that this very sentence is not provable.

Yes, but since I'm trying to give the heuristic here, it's ok. Formally they are closely related, see section 3.1 of http://plato.stanford.edu/entries/goedel-incompleteness/.
 
  • Like
Likes Demystifier
  • #48
I am taking the time to reread the article more closely.

I wasn't trying to check it, just read through it enough to broadly track the reasoning. This excerpt states the ultimate predicament that the computer can face in its attempt at computing gap/gapless - hopefully in a finite number of steps. Basically, they are considering what can happen as the computation progresses iteratively in pursuit of the solution:
... We have shown that the difference in energy between the halting and non-halting cases now depends inverse-polynomially on the amount of [Turing computer] tape used, which depends on the input ϕ. Not only does this fail to provide a constant bound on the energy difference, independent of the Hamiltonian parameter ϕ, this energy difference is uncomputable!
I believe the point here is that the more you work at the solution, the more the solution can change.

Here is the take from the authors:
But what does it mean for a physical property to be undecidable? After all, if it is physical, surely we could in principle construct the system in the laboratory, and measure it. A real quantum many-body system might exhibit gapped physics or gapless critical physics, but it must exhibit some kind of physics!
The key to reconciling this with our results is to realize that the thermodynamic limit is an idealisation. A real physical system necessarily has a finite size (albeit very large in the case of a typical many-body system consisting of O(1026) atoms). Nonetheless, signatures of undecidability appear in the very unusual finite-size behaviour of these models.
... and the effect on experimental results:
As the system size increases, the Hamiltonian will initially look exactly like a gapless system, with the low-energy spectrum appearing to converge to a continuum. But at some threshold lattice size, a constant spectral gap will suddenly appear. (Our construction can also be used to produce the opposite behaviour, with the system having a constant spectral gap up to some threshold lattice size, beyond which it abruptly switches to gapless physics. Not only can the lattice size at which the system switches from gapless to gapped be arbitrarily large, the threshold at which this transition occurs is uncomputable.
This implies that we can never know whether the system is truly gapless, or whether increasing the lattice size—even by just one more lattice site—would reveal it to be gapped.

And then the authors provide this feel for the characteristics of these undecidable system:
Signatures of undecidability also appear in the very unusual physics exhibited by these models. Systems with infinitely many phases are known in connection with the quantum Hall effect, where fractal phase diagrams such as the Hoftstadter butterfly can be obtained. The phase diagrams of the models appearing in our result are more complex still. Critical and non-critical phases are so intertwined that arbitrarily close to any non-critical point is a critical point, and vice versa. Indeed, the phase diagrams are so complex they are not just fractal, they are uncomputable. The physics of these models therefore exhibits extreme sensitivity to perturbations. A change in the external parameters of the system, however small, can drive it through infinitely many phase transitions.

The physicists among you can correct me if I am wrong, but my take on the above is this: A system that is as sensitive as that described above, will reliably transition through those gap and gapless states in response to a stimulus magnitude that approaches Planck's constants - and so such systems will be in a superposition of gap and gapless states. So all that is needed is to resolve what properties a material exhibits when it is in such a superposition.
 
  • #49
atyy said:
Perhaps an easier way to think about it is that the Goedel sentences are formal syntactic constructions, so they do not necessarily mean "consistent" or "not consistent" in general. If we believe PA is consistent, and the definition of Goedelian incompleteness means that the Goedel sentence and its negation can be added to PA to yield another consistent system, then it means that if the Goedel sentence ("Con(T)") is added to PA, the extended system has an interpretation as the "standard model of arithmetic". But if the negation ("Not(Con(T))") is added to PA, then the extended system has an interpretation as a "nonstandard model of arithmetic". http://web.mat.bham.ac.uk/R.W.Kaye/papers/arithhis.pdf

Demystifier said:
I see what you mean, but sentences claiming that something is consistent or not consistent are not called Godel sentences. A typical Godel sentence claims that this very sentence is not provable.

atyy said:
Yes, but since I'm trying to give the heuristic here, it's ok. Formally they are closely related, see section 3.1 of http://plato.stanford.edu/entries/goedel-incompleteness/.

Actually, there is a serious problem with my original comment, but not with the relationship between the Goedel sentence and Con(T). Con(T) implies that the Goedel sentence can be proved. However, contrary to what I implied, Not(Con(T)) does not imply that the the negation of the Goedel sentence cannot be proved - instead the condition of ω-consistency is required. However, it is correct that neither Con(T) nor Not(Con(T)) can be proved from T (where T is PA), so we believe either can be consistently added to PA, except that in one case we get a standard model of arithemetic, and in another case we get a non-standard model of arithmetic. See the comments on ω-consistency in http://www.columbia.edu/~hg17/godel-incomp4.pdf.
 
  • #50
So I've kept thinking about this and I've narrowed down on where I actually lose comprehension on this matter. It's been mentioned around the net but I can't find a real answer.

The article says that the threshold of adding lattice sites at which the gap may appear or disappear is uncomputable. Yet, at fixed lattice size, the model is computable. This doesn't make sense to me, so I must be missing something. Because, even if it's obviously beyond NP, you compute the threshold simply by trying all the lattice sizes until you find it. Or does it mean that you don't know if there IS a threshold at all? In that case though, why state it in such an awkward way as "the threshold is uncomputable" instead of just saying "you don't know whether there is a threshold"? The two things seem different anyway. Or do they mean uncomputable in a context that lies outside of trying all sizes?
 
  • Like
Likes Demystifier
Back
Top