Spectral weight function and the mass shift of a scalar field

Rocky Raccoon
Messages
35
Reaction score
0
In the Kallen-Lehmann spectral representation (http://en.wikipedia.org/wiki/Källén–Lehmann_spectral_representation) the interacting propagator is given as a weighted sum over free propagators. The pole of the integracting propagator is, of course, given by p^2=m^2, m being the physical mass of the particle.

Could this spectral representation be used to find the mass shift \delta m^2 = m^2 - m_0^2 of a scalar field (m_0 is the bare mass of the noninteracting particle)?

Thanks
 
Physics news on Phys.org
I think not but I'm not sure. In order to derive the spectral density function formula you are required to insert a basis of energy eigenstates which forces you to use the actual mass m and not the bare mass m_0. So that the free single particle propagator has the same pole location as the full propagator.

You might think that since the spectral density is a sum over poles you would find that taking this sum would yield a "total pole" and the location of the pole would be different from the single particle propagator. However the location of the pole of the full propagator is completely determined by the location of the pole of the free single-particle propagator (expressed in terms of the physical mass). Usually the full propagator is written in terms of the spectral density the following way to make this idea more explicit.

<br /> \Delta(k^2) = \frac{1}{k^2+m^2-i\epsilon}+\int^\infty_{(2m)^2}d\mu^2\rho(\mu^2) \frac{1}{k^2+\mu^2-i\epsilon}<br />

The integral of the poles gives something like a branch cut rather than contributing to the pole of the free propagator.
 
Interesting. Sorry I led you astray!
 
You didn't lead me astray, I was thinking the same thing as you and it got me nowhere so I tried PF :)
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top