What is the speed of light in gravity?

Zman
Messages
96
Reaction score
0
“It is a well proven fact, that the speed of light is reduced in a gravitational field. As a consequence, a light beam, which passes a big object, is bent towards the object.”

I read the above quote on the internet but I am not sure if it is a well proven fact that c is reduced in a gravitational field.

What is the accepted wisdom in physics on this issue?
 
Physics news on Phys.org
It depends on what one means by "the speed of light".

All observers who measures the speed of a photon that whizzes by in their local (vacuum) neighbourhoods, near or far from large masses and even inside black holes, get the same result c.
 
Zman said:
“It is a well proven fact, that the speed of light is reduced in a gravitational field. As a consequence, a light beam, which passes a big object, is bent towards the object.”

I read the above quote on the internet but I am not sure if it is a well proven fact that c is reduced in a gravitational field.

Near a big mass the speed of light is reduced when measured by a distant clock. Measured locally it is still c due to gravitational time dialtion:
http://en.wikipedia.org/wiki/Gravitational_time_dilation

The same happens in accelerated frames of reference;
http://en.wikipedia.org/wiki/Propagation_of_light_in_non-inertial_reference_frames
 
George Jones said:
It depends on what one means by "the speed of light".

Is there an interpretation where the "speed of light" in a gravitational field can be said to vary.

All observers measure the speed of light to be c locally but can the speed of light be inferred as having altered at some remote gravitational potential?
 
Zman said:
Is there an interpretation where the "speed of light" in a gravitational field can be said to vary.
From http://en.wikipedia.org/wiki/Propagation_of_light_in_non-inertial_reference_frames:
In non-inertial frames the local speed of light is also c, but the average speed of light measured over a finite distance may differ from c.
 
Last edited by a moderator:
Is there an interpretation where the "speed of light" in a gravitational field can be said to vary.
You can work in a weak-field approximation with a flat background, and treat gravitation as a perturbation. You then get g11/g00 (coordinate dx / coordinate dt) different from 1. Interpreting this as a different speed of light, you can calculate e.g. light deflection like you do in an optics problem. That's exactly what Einstein did in his original paper on GR.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
42
Views
717
Replies
5
Views
1K
Replies
26
Views
1K
Replies
30
Views
3K
Replies
3
Views
2K
Back
Top