Speed of sound versus frequency

AI Thread Summary
The speed of sound does not depend on its frequency; instead, it is determined by the elastic and inertial properties of the medium. The frequency is set by the oscillating source, while the wavelength is calculated using the formula λ = v/f. An example given is that if the speed varied with frequency, sounds from different instruments in an orchestra would arrive at different times, disrupting harmony. Some debate exists regarding the conditions under which the speed of sound might vary with frequency, particularly in non-adiabatic processes. However, in typical conditions like dry air at room temperature, the speed of sound remains consistent and closely aligns with theoretical predictions.
pixel01
Messages
688
Reaction score
1
My question is : does the speed of sound depend on its frequency?
All other medium conditions considered identical.
 
Physics news on Phys.org
pixel01 said:
My question is : does the speed of sound depend on its frequency?
All other medium conditions considered identical.
No. The frequency is set by the oscillating body which sets up the sound waves. The speed of the waves is determined by the elastic/inertial properties of medium and the wavelength is then given by \lambda= v/f.
As a practical example, think about an orchestra. If v did vary with f, the sounds from the different instruments would reach your ears at different times. The result would not be very musical:smile:
 
tonyh said:
No. The frequency is set by the oscillating body which sets up the sound waves. The speed of the waves is determined by the elastic/inertial properties of medium and the wavelength is then given by \lambda= v/f.
As a practical example, think about an orchestra. If v did vary with f, the sounds from the different instruments would reach your ears at different times. The result would not be very musical:smile:

I always thought like that, but this is what I copied from wiki:
"The medium in which a sound wave is traveling does not always respond adiabatically, and as a result the speed of sound can vary with frequency".
 
pixel01 said:
I always thought like that, but this is what I copied from wiki:
"The medium in which a sound wave is traveling does not always respond adiabatically, and as a result the speed of sound can vary with frequency".
Possibly? An adiabatic process is one that occurs so rapidly, or in a system so well insulated, such that we can consider the heat transfer (Q) to be zero. But I do not know enough about the subject to be able to judge the wiki quote. My answer applies to a simple models though- at the very least, it's a good rule of thumb.
 
air at room temperature is so close to an ideal gas that the compressions and rarefractions of sound through reasonably dry air would be nearly completely adiabatic. if it is completely adiabatic, then

P v^\gamma = \mathrm{constant}

and for diatomic gasses (air is 21% O2 and 78% N2) then \gamma = 5/2. the speed of sound is dependent on that \gamma and the measured speed of sound in air comes out very close to what the theory predicts. if the process weren't adiabatic, then there would not be the close agreement between the theory and experimental result.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top