Spring launches a block up a ramp -- How far does it go?

AI Thread Summary
The discussion focuses on calculating the distance a block launched by a spring travels up a ramp. An initial error in potential energy was corrected, revealing a height of 2m and a remaining energy of 3.48 J at the top of the ramp. The conversion of potential energy to kinetic energy is crucial for determining the block's velocity, which was calculated to be 6.15 m/s at a 45-degree angle. Frictional forces were considered, impacting the overall energy available for projectile motion. Ultimately, the range was determined to be 3.86m using the appropriate equations.
jskrzypi
Messages
5
Reaction score
2
Homework Statement
The spring in the figure has a spring constant of 1000 N/m . It is compressed 13.0 cm , then launches a 200 g block. The horizontal surface is frictionless, but the block's coefficient of kinetic friction on the incline is 0.190.
Relevant Equations
Wsp=1/2k(delta x)^2
Wfrict=mu(k)*mgd
Delta U=mg(delta y)
I think I have all the pieces here, and am able to solve for a work through the air. But I have a power output, and don't know how to isolate it to find the distance.

6-1-1.jpg
 
Last edited:
Physics news on Phys.org
I see now I had an error with my potential energy. Height is 2m not 2.82m I like originally calculated. So at the top of the ramp, it still has 3.48 J of projectile motion. I don't know how to convert that to the velocity/acceleration to find the length d.
 
Check your equation for the frictional force.
 
Could you draw a FBD for an instant in which the block is climbing the ramp?
Then, compare the forces and reactions with what you have learned about kinetic friction.

The potential energy of the spring becomes kinetic energy, which means there is velocity of the block at the bottom of the incline.
Some of the original kinetic energy is consumed by the friction of the slope.
In order to fly, the block will need to have enough velocity at the moment it reaches the top of the slope.

The flight time involves new transformations of energy: from top of slope kinetic to maximun reached height gravitational potential to crashing down kinetic energy (disregarding any friction with air).
 
So I believe I figured out my error with the friction [needed to multiply by cos 45]. That still leaves me with 3.785 J of projectile work. If K=1/2 mv^2, then v=6.15 m/s launched at a 45 degree angle.

I just found the equation for range...R=2vx*vy/g. Came out to the correct answer of 3.86m.

Thank you both for the assistance.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top