Sure.
First, a quick non-relativistic primer to make sure we start on the same page.
Newton's second law is F = dp/dt. And p=mv. As long as the mass of an object is constant, this can be rewritten F = dp/dt = m dv/dt = m a. In some introductory classes they only give F=ma for simplicity, but please remember Newton's second law is F = dp/dt.
Okay, now to relativistic dynamics. Since v = dx/dt, and different observers can't agree on measurements of time or distance, it is clear the ratio of them will transform even worse. For convenience, we'd like something that transforms with the lorentz transformations. This can be accomplished if we change dt to d'tau' where tau is the proper time of the object whose velocity we're measuring. Proper time is an invarient and thus all observers will agree upon it and make things easier. So now we have components of a four-vector V = dx / dtau. Of course dx transforms just like x, and as mentioned tau and thus dtau are invariant. It may seem a bit odd that we just redefined velocity as a ratio of a length measured in one frame and a time measure in a different frame, but the simplicity this gives is well worth it.
Okay, now to momentum. Just define momentum P = mV, where mass is the rest mass of the object (and thus an invariant) and V is our four-vector. Since m is invariant and V transforms with the lorentz tranformation, so will P ... thus it is a four-vector as well.
Alright, so now we "update" Newton's second law to use this new definition of momentum. In the non-relativistic limit P = mV -> mv (where v is the ordinary velocity), so this is a reasonable extension (and the standard convention). Also, a quick note that due to time dilation we can also write dtau = (1/gamma) dt, thus the spatial parts of the four vector momentum are gamma m v.
F = (d/dt) gamma m v.
Again, in the non-relativistic limit this reduces to the usual F = (d/dt) mv.
Since gamma = 1/sqrt(1 - v^2/c^2), and v can depend on time, this derivative gets messy, but is merely an exercise at this point. Taking the derivative yields the result you copied from wikipedia.
I hope that helped you see where that came from.