Stability against small perturbation.

wphysics
Messages
27
Reaction score
0
Hello,

I am reading the book, The Quantum Theory of Fields II by Weinberg.
In page 426 of this book (about soliton, domain wall stuffs), we have Eq(23.1.5) as the solution that minimizes Eq(23.1.3).

The paragraph below Eq(23.1.5), the author said "The advantage of the derivation based on the formula (23.1.3) is that it shows immediately that the solution (23.1.5) is stable against small perturbations that maintain the flatness of the boundary. ... By adding a term \frac{1}{2} (\frac{\textrm{d}\phi}{\textrm{d}y})^2 +\frac{1}{2} (\frac{\textrm{d}\phi}{\textrm{d}z})^2 in the integrand of Eq (23.1.2), we can see that this solution is also stable against any perturbation ..."

Here, I don't understand why they have to be stable against small perturbation in both cases. I guess I don't have any good idea about the stability of differential equation or action. Could you guys explain how we can show they are stable explicitly?

Thank you for your help.
 
Physics news on Phys.org
I don't have Weinberg. Put up the equations.
 
I am now at home, so I don't have Weinberg right now.
I will post the relevant equations as soon as I am back to the school.

Thank you for your interest.


QUOTE=rigetFrog;4772632]I don't have Weinberg. Put up the equations.[/QUOTE]
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top