Stability Analysis for Implicit Euler Method with Negative Amplification Factor

Click For Summary
The discussion focuses on the stability analysis of the implicit Euler method applied to the differential equation y' = λy, where λ is negative. The implicit Euler scheme leads to the equation y_(n+1) = y_n / (1 + hλ), indicating that if |1 - hλ| ≥ 1, the solution is stable and decaying. When λ is negative, the stability condition changes, leading to y_n+1 = y_n / (1 + hλ), which must be compared to the actual solution y(x) = Ae^(-λx). Participants explore the implications of varying λ, particularly at values of ±1, and suggest plotting points for clarity. The conversation blends mathematical analysis with light-hearted commentary, emphasizing the complexity of the topic.
Marcoreus
Messages
3
Reaction score
0
Fint the modified equation when the implicit Euler method is applied to y'= f(y). If f(y)=λy, where λ is negative. what is the effect on the amplication factor?
=>

y ' = λ * y
dy / dx = λ * y
dy / y = λ dx
ln y = λ* x + C
y = Ae^( λ* x ), the constant factor does not depend on λ.
i SOLVE THIS FOR THE ACTUAL SOLUTIONS
NOW,
The implicit Euler scheme is given by:
y_(n+1)= y_n +hf(y_n+1 , t_n+1 )
For f(y)=λ y, we have:
y_(n+1)= y_n +hf(y_n+1 , t_n+1 )= y_n + h λ y_n+1
Solving this for y_n+1 (in general, this is not possible), we arrive at:
y_n+1 = y_n / (1-h λ).....(eqn 1)

From (eqn 1), we can see that if |1−h λ|≥1, the solution is decaying (stable). Compare this to the actual solution of y(x)=Ae^(λ x).
If we have λ being negative, we would have:
y_n+1 = y_n / (1+h λ).....(eqn 2)

Compare this to the actual solution of y(x)=Ae^(−λ x). What conclusion can i draw?
Trying it for λ= ±1 , what happens to stability.
 
Last edited:
Physics news on Phys.org
Marcoreus said:
Fint the modified equation when the implicit Euler method is applied to y'= f(y). If f(y)=λy, where λ is negative. what is the effect on the amplication factor?
=>

y ' = lambda * y
dy / dx = lambda * y
dy / y = lambda dx
ln y = lambda * x + C
y = [ C / lambda ]e^( lambda * x )
Your last equation is wrong. The equation before it is
ln y = λx + C
Exponentiating (making each side the exponent on e) gives
$$ e^{ln y} = e^{λx + C} = e^{λx} \cdot e^C$$
Can you finish this?

What you have done is solve the DE using separation. I don't know what the "implicit Euler method" is, so you might not have solved this in the intended way.
Marcoreus said:
This is what I have done so far. Can anyone help me if Iam going right direction to answer the question?
 
  • Like
Likes 1 person
BTW, your title made me think you had a question about classical poetry. Odes are poems in praise of someone. ODEs are ordinary differential equations.
 
Fint the modified equation when the implicit Euler method is applied to y'= f(y). If f(y)=λy, where λ is negative. what is the effect on the amplication factor?
=>

y ' = λ * y
dy / dx = λ * y
dy / y = λ dx
ln y = λ* x + C
y = Ae^( λ* x ), the constant factor does not depend on λ.
i SOLVE THIS FOR THE ACTUAL SOLUTIONS
NOW,
The implicit Euler scheme is given by:
y_(n+1)= y_n +hf(y_n+1 , t_n+1 )
For f(y)=λ y, we have:
y_(n+1)= y_n +hf(y_n+1 , t_n+1 )= y_n + h λ y_n+1
Solving this for y_n+1 (in general, this is not possible), we arrive at:
y_n+1 = y_n / (1-h λ).....(eqn 1)

From (eqn 1), we can see that if |1−h λ|≥1, the solution is decaying (stable). Compare this to the actual solution of y(x)=Ae^(λ x).
If we have λ being negative, we would have:
y_n+1 = y_n / (1+h λ).....(eqn 2)

Compare this to the actual solution of y(x)=Ae^(−λ x). What conclusion can i draw?
Trying it for λ= ±1 , what happens to stability.
 
Welcome to PF;

Ode to ODEs

O My sweet ODE
How is it you can be
So beautiful and yet so deadly
To me

The method's Implicit Euler,
But deep-fried brain is oilier
Numerical iterations don't clean me up!
I'm soilier.

Variables separate
As we cogitate
But it's not the method no
But it's not the method no

By brain hurts so sweetly when you are around
Even when you make by head to pound
But O the joy when the general solution
is found.

Sweet ODE.

"implicit eulers method" is a numerical method involving iteration.
y_(n+1)= y_n +hf(y_n+1 , t_n+1 )
... oh you found it - good :)
 
that was nice poem. i like it thanks
 
Imagine my disappointment when I found the thread was not about Odes :(
we arrive at:
y_n+1 = y_n / (1-h λ).....(eqn 1)

From (eqn 1), we can see that if |1−h λ|≥1, the solution is decaying (stable). Compare this to the actual solution of y(x)=Ae^(λ x).
If we have λ being negative, we would have:
y_n+1 = y_n / (1+h λ).....(eqn 2)

Compare this to the actual solution of y(x)=Ae^(−λ x). What conclusion can i draw?
Trying it for λ= ±1 , what happens to stability.
... these are all good questions.
Before we pitch in ere, how about having a go at answering them?
Give it your best shot.

If you are stuck, try plotting a few points for some easy values of the parameters.
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K