1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Static Equilibrium Beam/supports?

  1. Jul 2, 2008 #1
    1. The problem statement, all variables and given/known data
    A man doing push-ups pauses in the position shown (in the figure I found on the net)
    a= 40cm b= 95cm c= 30cm Tha mass of the person is 75kg. Determine the normal force exerted by the floor on each hand and each foot.

    2. Relevant equations
    [tex]\Sigma\tau[/tex]=0
    [tex]\SigmaF=0[/tex]


    3. The attempt at a solution
    before I started I wanted to know if it would be okay to simply solve the problem supposing he were completely horizontal, but it might not be the case. Will i need to use trig, or can i just treat him like a beam with supports?
     

    Attached Files:

  2. jcsd
  3. Jul 2, 2008 #2
    Do I need to calculate the angles for the guy in this position, or can I just say he's horizontal?
    I calculated the angle between his feet and the ground is 17.53 degrees. I'll get back to work and see where it takes me, but I'd like maybe some advice? Thanks!
     
    Last edited: Jul 2, 2008
  4. Jul 2, 2008 #3
    I have the sum of the force in the Y direction as Fn-mgsintheta+Fn=0 is this correct? The only forces acting on the guy are normal force and gravity, correct? Please someone help me soon :[
     
  5. Jul 2, 2008 #4

    rock.freak667

    User Avatar
    Homework Helper

    Attatchments might take a few hours to be approved

    upload it on http://imageshack.us and then past the link for forums.
     
  6. Jul 2, 2008 #5
    [​IMG]
     
  7. Jul 2, 2008 #6
    Are the sum of the forces in the y direction FN-mg*sintheta*r+ FN -mgsintheta*r2? My axis is the center of gravity since i need both normal forces.
     
  8. Jul 2, 2008 #7

    rock.freak667

    User Avatar
    Homework Helper

    [itex]R_a[/itex]= Normal reaction of the arm
    [itex]R_f[/itex]= Normal reaction of the foot


    if at that angle he is in equilibrium then


    [tex]R_a+R_f-W=0[/tex]



    Now just take moments about any point and you can solve the two equations.
     
  9. Jul 2, 2008 #8
    So my sum of torques
    [tex]\Sigma\tau[/tex]= Fn-mgsinR +Fn -mgsinr

    Should I have two sum of forces in the y direction to find each normal force? I'm sorry, but I'm not getting that sum of the torques. Would i be able tosolve for each individual one? Will I need to multiply each normal force by the angle, or would that just be the weight? Thanks for helping me!
     
  10. Jul 2, 2008 #9

    rock.freak667

    User Avatar
    Homework Helper

    Take torques about the point where Rf acts and use [itex]\tau = Fr sin\theta[/itex]

    where r is the distance of the force to the point where Rf acts.
     
  11. Jul 2, 2008 #10
    I tried doing this, but the torques do not equal out. I have Tcw=mgsing72.47*.42m= 294.36
    Tccw=mgsin17.5*.996=220.5
     
  12. Jul 2, 2008 #11

    rock.freak667

    User Avatar
    Homework Helper

    Use the exact ratio of sine and then check again.
     
  13. Jul 2, 2008 #12
    I checked the sines but I keep getting the same thing. Should I be using the angles on either side formed by the FG pulling the center of gravity down? As you can se I'm using 17.53 (angled formed by his fet atthe ground) and 72.47 from the right side of the mg. Which angles should I use?
     
  14. Jul 2, 2008 #13

    rock.freak667

    User Avatar
    Homework Helper

    Taking torques about Rf.

    [tex]\tau_1=(R_a)(95+40)sin\theta[/tex]


    [tex]\tau_2=-95Wsin\theta[/tex]

    so now for equil. [itex]\tau_1=\tau_2[/itex]

    the [itex]sin\theta[/itex] cancels and you can solve for Ra (Note W is weight)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?