- #1

- 39

- 0

## Main Question or Discussion Point

Hi,

I am very confused. I have searched everywhere online and have drawn free-body diagrams, but I am still confused as to why static fricition, not kinetic friction, provides the centripetal force in a car moving in a circle.

In addition, assuming that the centripetal force of a car moving around a circle is static friction, then you can find the maxium velocity that you can travel without going tangent to the circle, but can you travel at a slower velocity than this maxium velocity? Your centripetal force would change and no longer be equal to the static friction. How does this work?

I am very confused. I have searched everywhere online and have drawn free-body diagrams, but I am still confused as to why static fricition, not kinetic friction, provides the centripetal force in a car moving in a circle.

In addition, assuming that the centripetal force of a car moving around a circle is static friction, then you can find the maxium velocity that you can travel without going tangent to the circle, but can you travel at a slower velocity than this maxium velocity? Your centripetal force would change and no longer be equal to the static friction. How does this work?