Stationary States and Spreading of Wave Function

boderam
Messages
24
Reaction score
0
What I know: In stationary states the time dependence is factored out so it is of the form phi(q) * e^(-i omega t), thus in its appearance there is no wave function spread. However I recall from texts that wave packet spread is considered a universal phenomena in quantum mechanics, so I am looking to resolve this contradiction.
 
Physics news on Phys.org
Wave packets are not stationary states.
 
No. It's just that a packet consists of stationary states with different frequencies and wave vectors.

Note that how quickly packet is supposed to spread depends on uncertainty in momentum, which is zero for the wave function you wrote. That, of course, is compensated by infinite uncertainty in position. If you try to compute <q²>-<q>², the first integral will diverge.

To construct a localized packet, you have to use different frequencies, so expectation of momentum will have uncertainty to it, and that will cause packet spread, unless the packet happens to travel at the speed of light (m=0). But that's relativistic QM already.
 
K^2 said:
Note that how quickly packet is supposed to spread depends on uncertainty in momentum, which is zero for the wave function you wrote. That, of course, is compensated by infinite uncertainty in position. If you try to compute <q²>-<q>², the first integral will diverge.

Does that mean stationary states do not obey the Uncertainty Principle in the usual sense? We would need a sort of limiting process that would this work. I am having a hard time understanding this. I imagine a function like a gaussian being the phi(q) and then it multiplied by the phase factor, so I don't see how the uncertainty in position is infinite.
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
2
Views
3K
Replies
61
Views
5K
Replies
6
Views
3K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
Back
Top