Statistics Notation: Mean, Variance & Normal Distribution

ampakine
Messages
60
Reaction score
0
In my lecture notes on confidence intervals the lecturer wrote this:
Recall that measurements tend to follow a normal distribution. To describe the normal distribution and answer useful questions (as in the previous chapter), we need to know two numbers; the expectation or mean μ and the standard deviation (square root of the variance) σ. Then the quantity we measure X follows the normal distribution:
X ~ N(μ, σ2)

I don't understand the notation of that bolded text. I know X is a random variable, μ is the population mean and σ is the population standard deviation but what does the ~ mean? Also the N(μ, σ2) I assume means normal distribution but is that some kind of standard notation for distributions? For example if I said N(23,9) would that mean the normal distribution with a mean of 23 and standard deviation of 9?
 
Last edited:
Physics news on Phys.org
ampakine said:
In my lecture notes on confidence intervals the lecturer wrote this:


I don't understand the notation of that bolded text. I know X is a random variable, μ is the population mean and σ is the population standard deviation but what does the ~ mean?

In probability theory, the notation is used to state the distribution for a random variable. You may think of the "~" as saying "distributed as" or "with distribution" or "has distribution".

Also the N(μ, σ2) I assume means normal distribution but is that some kind of standard notation for distributions?

It's a standard notation for normal distributions.

For example if I said N(23,9) would that mean the normal distribution with a mean of 23 and standard deviation of 9?

Yes
 
That clears it up. Thanks!
 
ampakine said:
For example if I said N(23,9) would that mean the normal distribution with a mean of 23 and standard deviation of 9?

Just to say it would be a normal with a mean of 23 and a variance of 9.
 
QuendeltonPG said:
Just to say it would be a normal with a mean of 23 and a variance of 9.

Yes. My mistake. The notation did use a \sigma^2 so the 9 is the variance, not the standard deviation.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top