I Structural difference between soft and hard ferromagnets

  • I
  • Thread starter Thread starter hokhani
  • Start date Start date
  • Tags Tags
    Atomic structure
AI Thread Summary
The discussion highlights the structural differences between soft and hard ferromagnets, focusing on their atomic dipoles and magnetic properties. Hard ferromagnets, like bar magnets, have stronger and denser dipoles that resist external magnetic influences, while soft ferromagnets, such as iron, are engineered to be easily magnetized and demagnetized. The ability to retain magnetization in hard magnets is linked to their crystalline structure and purity, whereas soft magnets often contain impurities that reduce their retention capability. Additionally, the movement of domain walls during magnetization and demagnetization plays a crucial role in defining the hard or soft nature of a material. Overall, the discussion emphasizes that the differences are more about engineered properties and grain structure than just atomic dipole characteristics.
hokhani
Messages
561
Reaction score
18
TL;DR Summary
Why the hard ferromagnet can retain its magnetic dipole allignment while the soft one can not?
In the ferromagnetic materials not only the atoms have magnetic dipoles but also the dipoles are aligned well in different domains. However, what is the differnce berween atomic structure of a soft ferromagnet like iron and a hard ferromagnet like a bar magnet? My first guess is that the atomic dipoles might be stronger and more dense in the hard ferromagnets so that the exchange interaction between the dipoles don't let the external magnetic field affect them as easily as soft ferromagnet. Could anyone please explain exactly that? Any help is appreciated.
 
Physics news on Phys.org
From what I can tell, the classification of a soft vs hard magnetic material is more of an engineered property.

To put it simply, elements have various levels of being able to be magnetized and to hold onto that magnetization. Magnetization is caused by spinning electrons.

Materials with complete shells have electrons spinning in both directions in each shell, thus the magnetic effects cancel and are not as magnetically interactive. Most common magnetic elements have outer shells not complete, with more shells with single electrons, that create the 'uncanceled' dipole moment (FE, Ni and Co). If these material are exposed to external magnetic field, these dipoles align and persist. (Side note - interesting I am guessing its not likely to find many 'pre-magnetized' magnets in nature).

Back to the hard and soft, doing some brief searches, it appears hard magnets (like speaker magnets) are more pure forms of these elements, and would expect that crystalline structure of the material is made to optimize the magnetic effects. The soft magnetic material (like power transformers) are again the material than can be magnetized, but infused with other elements to reduce the ability to retain the magnetization (silicon steel was a term that came up). Hence, why it appears to be more engineered properties than elemental properties.

So, while the number of available dipoles is a factor, it looks like it could be how much they are able to interact is a significant factor. This input only came from a half hour review of an old material science text book, for what its worth.
 
The magnetization and demagnetization process is due to the motion of the domain walls. The hard/soft quality is related to the energy needed to move the walls. It is usually not a matter of the nature of atomic dipoles but of the grain structure. You can have steel as a hard or soft material depending in thermal treatment and impurity level.
 
hokhani said:
TL;DR Summary: Why the hard ferromagnet can retain its magnetic dipole allignment while the soft one can not?

In the ferromagnetic materials not only the atoms have magnetic dipoles but also the dipoles are aligned well in different domains. However, what is the differnce berween atomic structure of a soft ferromagnet like iron and a hard ferromagnet like a bar magnet? My first guess is that the atomic dipoles might be stronger and more dense in the hard ferromagnets so that the exchange interaction between the dipoles don't let the external magnetic field affect them as easily as soft ferromagnet. Could anyone please explain exactly that? Any help is appreciated.
 
Inside every “permanent magnet” there is an internal demagnetizing force trying to demagnetize it. I find it useful to think of a “permanent magnet” as being like a box of matches with the match heads being little N poles that are all repelling each other but are being forced to lie next to each other by the strength of the surrounding substrate. If the magnet is heated then at a certain temperature (known as the Curie temperature) the substrate strength weakens enough to allow all these little magnetic dipoles to randomize their orientations. Even without such heating the traditional metal magnets can be weakened by being bashed about a lot.
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top