Substitution Method

  • #1
Cradle_of_Knowledge
4
0
Hi,

I have another problem about substitution Method. I think this method is used to make the problem to solve in easy way but it is making my procedure too long for this problem. Can you solve it by substitution method.

S (x+5)½/x-4 dx

where S is the sign of integral. The answer of this problem is

2(x+5)½+3ln[(x+5)½-3/(x+5)½+3]+c
:confused:
 

Answers and Replies

  • #2
Cyrus
3,150
16
You will have to do a trig substitution using either sin or cos. I hope your at least attemping these homework problems before you ask for the anwser, because they seem like homework. :rolleyes:
 
  • #3
unggio
23
0
i set [tex]u^2= x+5[/tex]

i get integral:
[tex]2\int \frac {\2{u^2}}{(u+3)(u-3)} du [/tex]

then do the long division, do partial fractions then i get the same answer as u posted.

answer is : [tex]2u -3\ln(u+3) + 3\ln(u-3) + c[/tex]

i was wondering how do u know if
[tex] u=? +\sqrt{x+5} \ or \ u=?-\sqrt{x+5}[/tex]
?
 
Last edited:
  • #4
Cyrus
3,150
16
nice choice of subsitution unggio, i take back having to use trig now that I see what you wrote.

You can learn to use the [tex] LaTeX [/tex] in the physics forum.
 
  • #5
Orion1
973
3

[tex]u^2 = x + 5[/tex]

[tex]2 \int \frac{u^2}{(u + 3)(u - 3)} du = 2 \left( u + \frac{3}{2} \ln [u - 3] - \frac{3}{2} \ln [u + 3] \right) + C[/tex]

[tex]2 \left( u + \frac{3}{2} \ln [u - 3] - \frac{3}{2} \ln [u + 3] \right) + C= 2u + 3 \ln (u - 3) - 3 \ln (u + 3) + C[/tex]

[tex]2u + 3 \ln (u - 3) - 3 \ln (u + 3) = 2 \sqrt{x + 5} + 3 \ln (\sqrt{x+5} - 3) - 3 \ln (\sqrt{x + 5} + 3) + C[/tex]

[tex]\boxed{ \int \frac{\sqrt{x + 5}}{x - 4} dx = 2 \sqrt{x + 5} + 3 \ln (\sqrt{x+5} - 3) - 3 \ln (\sqrt{x + 5} + 3) + C}[/tex]

My research also located an Identity:
[tex]\tanh^{-1} \left( \frac{u}{3} \right) = \frac{1}{2} ( \ln [u + 3] - \ln [u - 3] )[/tex]

 
Last edited:
  • #6
unggio
23
0
how do u decide that u is the positive or negative?

[tex] u=? +\sqrt{x+5} \ or \ u=?-\sqrt{x+5}[/tex]
 
  • #7
Orion1
973
3

The functional identity:
[tex]\tanh^{-1} \left( \frac{u}{3} \right) = \frac{1}{2} ( \ln [u + 3] - \ln [u - 3] )[/tex]

There are two possible solutions in Quadrants I and III, therefore [tex]u = \pm \sqrt{x + 5}[/tex]

However, the solution:
[tex]2 \sqrt{x + 5} + 3 \ln (\sqrt{x+5} - 3) - 3 \ln (\sqrt{x + 5} + 3) + C = 0[/tex]

Has x-intercept only at [tex]x = 7.953[/tex], therefore [tex]u = + \sqrt{x + 5}[/tex]
 
Last edited:

Suggested for: Substitution Method

  • Last Post
Replies
5
Views
196
  • Last Post
Replies
8
Views
594
  • Last Post
Replies
28
Views
723
Replies
1
Views
399
  • Last Post
Replies
13
Views
572
  • Last Post
Replies
4
Views
496
Replies
4
Views
2K
  • Last Post
Replies
1
Views
501
Replies
3
Views
439
Top