How Can Successive Boosts Illuminate the Lorentz Transformation?

  • Thread starter Thread starter actionintegral
  • Start date Start date
actionintegral
Messages
305
Reaction score
5
Hi Friends,

From time to time I have seen transformations replaced by a succession of infinitesimal transformations. The end result ends up being an exponent.

My knowledge of this is vague and I would like to look into it more seriously. Particularly I am interested in describing the lorentz transformation as a sequence of infinitesimal boosts.

Can someone point me to the first thing I need read to understand this?

Thanks
 
Physics news on Phys.org
Hi, ActionIntegral,

I'll be more than happy to take a stab at it! Just expand the lorentz transform in a taylor series in v about v=0 keeping only the first order.

You can raise this operator to the nth power. Somehow this becomes an exponent but I haven't figured that part out yet.
 
actionintegral said:
Hi, ActionIntegral,

Somehow this becomes an integral but I haven't figured that part out yet.

That's ok - I wouldn't want you to do all the work for me! :smile:
 
actionintegral said:
Hi Friends,

From time to time I have seen transformations replaced by a succession of infinitesimal transformations. The end result ends up being an exponent.

My knowledge of this is vague and I would like to look into it more seriously. Particularly I am interested in describing the lorentz transformation as a sequence of infinitesimal boosts.

Can someone point me to the first thing I need read to understand this?

Thanks

What I think you're trying to do is find the "generator" of the Lorentz group.

http://en.wikipedia.org/wiki/Generating_set_of_a_group

In abstract algebra, a generating set of a group G is a subset S such that every element of G can be expressed as the product of finitely many elements of S and their inverses.

But you want to do this for a continuous group. The Lorentz transformation is a "group" in the abstract algebra sense with the group operation being the successive application of transforms, because the result is associative f x (g x h) = (f x g) x h, and has an inverse. However, the Lorentz group is an infinite group. This is called a "Lie group".

So what you need to do is to read up on Lie groups (specifically the generators of Lie groups). Or see if you can find a mathemetician.

Hope this helps.
 
Let \Theta=\left[ \begin {array}{cc} 0&1\\\noalign{\medskip}1&0\end {array} \right]\theta.
Formally, write \exp(\Theta)=I+\Theta+\Theta^2/2!+\Theta^3/3!+\ldots. Do you recognize \exp(\Theta)?
 
Both good answers - i'll read up on it. thanks to all three of you!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top