MHB Sum and product of roots of quadratic equation

AI Thread Summary
The discussion focuses on deriving the sum and product of the roots of a quadratic equation using given relationships among the coefficients. The user initially finds the sum of the roots to be zero but becomes stuck in further calculations. Key equations are established, including relationships between the coefficients a, b, c, and d, leading to the conclusion that a + c equals 121. Ultimately, this results in the total sum a + b + c + d equating to 1210. The conversation emphasizes the importance of showing work to identify where confusion arises in solving quadratic equations.
Mathsonfire
Messages
11
Reaction score
0
2502444ea79b1f6544313e76b30e3cda.jpg

#85
 
Mathematics news on Phys.org
You've posted 4 questions, and I have given all 4 threads more useful titles, now I would ask that you show what you've tried in each thread. This way we can see where you're stuck.
 
Well i am stuck at this point
I found sum of zeroes in both cases and then got stuck.what should i do
 
Please post what you have so far. :)
 
We know:

$$c+d=10a$$

$$a+b=10c$$

Hence:

$$a+b+c+d=10(a+c)$$

We also know:

$$c^2-11b=a^2-11d$$

$$11d-11b=a^2-c^2$$

$$11(d-b)=(a+c)(a-c)$$

And we obtain by subtraction of the first 2 equations:

$$(d-b)-(a-c)=10(a-c)$$

Or:

$$d-b=11(a-c)$$

Hence:

$$121(a-c)=(a+c)(a-c)$$

Assuming \(a\ne c\) (otherwise \(d=b\) and the two quadratics are identical) there results:

$$a+c=121$$

Hence:

$$a+b+c+d=10\cdot121=1210$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top