Sum of n consecutive numbers is divisible by n

  • Thread starter Thread starter Matt
  • Start date Start date
  • Tags Tags
    Numbers Sum
AI Thread Summary
The discussion centers on the statement that the sum of n consecutive numbers is divisible by n, which is found to be true only when n is odd. Participants explore various mathematical derivations and formulas to support this claim, noting that the median and mean of consecutive numbers are equal. When n is even, the sum leaves a remainder of n/2, indicating it is not divisible by n. The conversation includes requests for further clarification and problem-solving assistance. Overall, the key takeaway is the distinction in divisibility based on whether n is odd or even.
Matt
Messages
11
Reaction score
0
I'm trying to investigate this statement: The sum of n consecutive numbers is always divisible by n.

I've found already that it's only true when the total amount of numbers is an odd number. I've also found that the median and mean are the same with consecutive numbers. I can not prove that the it's only true with odd numbers.
 
Mathematics news on Phys.org
Matt said:
I'm trying to investigate this statement: The sum of n consecutive numbers is always divisible by n.

I've found already that it's only true when the total amount of numbers is an odd number. I've also found that the median and mean are the same with consecutive numbers. I can not prove that the it's only true with odd numbers.
try writing down a general formula for the sum
 
The remainders, after dividing by n, for n consecutive numbers are 0,1,...,n-1. Sum the remainders to get n(n-1)/2.

If n is odd, n-1 is even and (n-1)/2 is an integer, so this sum is divisible by n.

If n is even, n-1 is odd. n(n-1)/2 = n(n-2)/2 + n/2. (n-2)/2 is an integer, so n/2 is the remainder after dividing the sum by n.
 
Last edited:
Another way to look at it: to find the sum of numbers from k to k+ n- 1, find the sum from 1 to k+ n- 1, (k+ n- 1)(k+ n)/2, then subtract the sum from 1 to k, k(k- 1)/2. That is ((k^2+ 2kn+ n^2- k- n)- (k^2- k))/2= (2kn+ n^2- n)/2= n((2k- n- 1)/2) so is divisible by n.
 
HallsofIvy said:
Another way to look at it: to find the sum of numbers from k to k+ n- 1, find the sum from 1 to k+ n- 1, (k+ n- 1)(k+ n)/2, then subtract the sum from 1 to k, k(k- 1)/2. That is ((k^2+ 2kn+ n^2- k- n)- (k^2- k))/2= (2kn+ n^2- n)/2= n((2k- n- 1)/2) so is divisible by n.
You missed the point. In your derivation 2k-n-1 must be even, so n must be odd. When n is even the expression has a remainder of n/2.
 
Thank you very much for your everyone. I really appreciate it.

Mathman, could I run a couple of problems past you if you have a moment?

Regards,
Matt.
 
mathman said:
You missed the point. In your derivation 2k-n-1 must be even, so n must be odd. When n is even the expression has a remainder of n/2.
Thank you very much for your everyone. I really appreciate it.
Mathman, could I run a couple of problems past you if you have a moment?

Regards,
Matt.
 
Matt said:
Thank you very much for your everyone. I really appreciate it.
Mathman, could I run a couple of problems past you if you have a moment?

Regards,
Matt.
If you submit them via the forum I will look at them. I prefer not to answer privately.
 
mathman said:
You missed the point. In your derivation 2k-n-1 must be even,
How do you get that?

so n must be odd. When n is even the expression has a remainder of n/2.
 
  • #10
In your derivation you assumed n((2k- n- 1)/2) is an integer divisible by n. Therefore (2k-1-n)/2 must be an integer.

2k--n-1: 2k is even, if n is even, n+1 is odd. Even number minus odd number is odd.
 

Similar threads

Replies
3
Views
2K
Replies
0
Views
2K
Replies
3
Views
2K
Replies
12
Views
2K
Replies
7
Views
3K
Back
Top