(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

So, I know the pdf for independent random variables is found by using the convolution; the pdf is f[sub:X+Y](a) = ∫ f[sub:X](a-y)f[sub:Y](y)dy, but can I just use the density function for a function of a random variable instead; that is: f[sub:X+Y](x[u,v], y[u,v])(Jacobian Inverse(x[u,v], y[u,v])) and then integrate it? It seems much easier that way.

2. Relevant equations

f[sub:X+Y](a) = ∫ f[sub:X](a-y)f[sub:Y](y)dy

f[sub:X+Y](x[u,v], y[u,v])(Jacobian Inverse(x[u,v], y[u,v]))

Jacobian Determinant: (∂u/∂x)(∂v/∂y)-(∂u/∂y)(∂v/∂x)

3. The attempt at a solution

More of a question on coursework than homework or a specific problem. However when I find the density function when U=X+Y I get f(x[u-v], y[v])

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Sums of Independent Random Variables

**Physics Forums | Science Articles, Homework Help, Discussion**