How can simulations help us measure dark energy and its effects on the universe?

wolram
Gold Member
Dearly Missed
Messages
4,410
Reaction score
555
http://www.sciencedaily.com/releases/2008/01/080110194502.htm


Results of the simulations, carried out by Durham University's world-leading Institute for Computational Cosmology (ICC), tell researchers how to measure dark energy -- a repulsive force that counteracts gravity.
 
Space news on Phys.org
What are these sound waves?

The simulations, which took 11 days to run on Durham's unique Cosmology Machine (COSMA) computer, looked at tiny ripples in the distribution of matter in the Universe made by sound waves a few hundred thousand years after the Big Bang.
 
I think the "Findings are published January 11 in the Monthly Notices of the Royal Astronomical Society" refers to this paper: http://adsabs.harvard.edu/abs/2008MNRAS.383..755A".

Abstract:
We assess the detectability of baryonic acoustic oscillation (BAO) in the power spectrum of galaxies using ultralarge volume N-body simulations of the hierarchical clustering of dark matter and semi-analytical modelling of galaxy formation. A step-by-step illustration is given of the various effects (non-linear fluctuation growth, peculiar motions, non-linear and scale-dependent bias) which systematically change the form of the galaxy power spectrum on large scales from the simple prediction of linear perturbation theory. Using a new method to extract the scale of the oscillations, we nevertheless find that the BAO approach gives an unbiased estimate of the sound horizon scale. Sampling variance remains the dominant source of error despite the huge volume of our simulation box (=2.41h-3Gpc3). We use our results to forecast the accuracy with which forthcoming surveys will be able to measure the sound horizon scale, s, and, hence constrain the dark energy equation of state parameter, w (with simplifying assumptions and without marginalizing over the other cosmological parameters). Pan-STARRS could potentially yield a measurement with an accuracy of Δs/s = 0.5-0.7 per cent (corresponding to Δw ~ 2-3 per cent), which is competitive with the proposed WFMOS survey (Δs/s = 1 per cent Δw ~ 4 per cent). Achieving Δw <= 1 per cent using BAO alone is beyond any currently commissioned project and will require an all-sky spectroscopic survey, such as would be undertaken by the SPACE mission concept under proposal to ESA.
The 'sound waves' referred to are baryon acoustic oscillations (BAO) ... an exciting, relatively new, field in observational cosmology.
 
Last edited by a moderator:
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top