Would it be possible to make a quantum computer with fluidic logic (https://en.m.wikipedia.org/wiki/Fluidics), using a superfluid, like liquid Helium-4, as the the "current"?
I think the question I would ask is, what are you trying to gain from switching to this very awkward material? The only advantage I would see is reduction of friction losses, but I'm not sure that's even a major concern in fluidics. On the downside, now you have a device that needs to stay below 2K, and you get hard-to-deal-with side effects.
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated...
Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/
by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
I don't know why the electrons in atoms are considered in the orbitals while they could be in sates which are superpositions of these orbitals? If electrons are in the superposition of these orbitals their energy expectation value is also constant, and the atom seems to be stable!