Surface Integral of Vector Fields

Click For Summary
To evaluate the surface integral of the vector field F(x, y, z) = y i + x j + z^2 k across the helicoid surface S, the flux can be computed using the formula ∫∫S F · dS = ∫∫D F*(r_u x r_v)dA. The integrals set up are from 0 to 3 for u and 0 to 3π for v, leading to the expression involving u*sin(v)^2 - u*cos(v)^2 + u*v^2. The integration process can be simplified by first integrating with respect to v, followed by u. The integral appears correct, and no special techniques are necessary for evaluation.
drecklia
Messages
3
Reaction score
0
Evaluate the surface integral ∫∫S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.
F(x, y, z) = y i + x j + z^2 k
S is the helicoid (with upward orientation) with vector equation r(u, v) = ucos(v)i + usin(v)j + v k, 0 ≤ u ≤ 3, 0 ≤ v ≤ 3π.

∫∫S f*dS=∫∫D F*(r_u x r_v)dA

i got int[0,3] and int[0,3pi] usin(v)^2-ucos(v)^2+uv^2dvdu
i do not know how to integrate this(yeah, shame on me) and i don't know if this integral is correct
 
Physics news on Phys.org
It looks ok to me. What's stopping you from doing it? First integrate dv and then the result du. No special tricks needed. Though you could simplify u*(sin(v)^2-cos(v)^2).
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K