- #1
Knaapje
- 8
- 0
Homework Statement
[itex]\int\int _{S} \sqrt{1 + x^2 + y^2} dS[/itex]
Given that S is the surface of which [itex]\textbf{r}(u,v) = u\cdot cos(v)\textbf{i}+u\cdot sin(v)\textbf{j}+v\textbf{k}[/itex] is a parametrization. [itex](0 \leq u \leq 1, 0 \leq v \leq \pi)[/itex]
Homework Equations
[itex]dS = \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| du dv[/itex]
The Attempt at a Solution
I think the answer is [itex]\frac{4}{3}\pi[/itex], because [itex]dS = \sqrt{1+u^2}du dv[/itex] and [itex]\sqrt{1+x^2+y^2} = \sqrt{1+u^2}[/itex] using the given parameterization.