Surface Integral with Parametrization

In summary, the given integral is \int\int_{S} \sqrt{1 + x^2 + y^2} dS, and using the parametrization \textbf{r}(u,v) = u\cdot cos(v)\textbf{i}+u\cdot sin(v)\textbf{j}+v\textbf{k} (0 \leq u \leq 1, 0 \leq v \leq \pi), the answer is \frac{4}{3}\pi. This is obtained by calculating dS = \sqrt{1+u^2}du dv and using the given parameterization in the integral.
  • #1
Knaapje
8
0

Homework Statement


[itex]\int\int _{S} \sqrt{1 + x^2 + y^2} dS[/itex]
Given that S is the surface of which [itex]\textbf{r}(u,v) = u\cdot cos(v)\textbf{i}+u\cdot sin(v)\textbf{j}+v\textbf{k}[/itex] is a parametrization. [itex](0 \leq u \leq 1, 0 \leq v \leq \pi)[/itex]

Homework Equations


[itex]dS = \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| du dv[/itex]


The Attempt at a Solution


I think the answer is [itex]\frac{4}{3}\pi[/itex], because [itex]dS = \sqrt{1+u^2}du dv[/itex] and [itex]\sqrt{1+x^2+y^2} = \sqrt{1+u^2}[/itex] using the given parameterization.
 
Physics news on Phys.org
  • #2
Is there a question there? Do you expect us to work it out for ourselves just to check your answer? If you would show your work we could tell you at a glance whether or not your answer is correct.
 
  • #3
Alright, this was my full calculation:
[itex]dS = \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| du dv
\\= \left| (cos(v), sin(v), 0) \times (-u\cdot sin(v),u\cdot cos(v), 1) \right| du dv
\\= \left| (sin(v),-cos(v),u\cdot (cos^2(x) + sin^2(x))) \right| du dv
\\= |(sin(v),-cos(v),u)| du dv
\\= \sqrt{cos^2(v)+sin^2(v)+u^2} du dv
\\= \sqrt{1+u^2}du dv[/itex]

[itex]\int\int_{S} \sqrt{1+x^2+y^2}dS = \int_0^\pi \int_0^1 \sqrt{1+r_1(u,v)^2+r_2(u,v)^2} \cdot \sqrt{1+u^2} du dv
\\=\int_0^\pi \int_0^1 \sqrt{1+(u\cdot cos(v))^2+(u\cdot sin(v))^2}\cdot \sqrt{1+u^2} du dv
\\=\int_0^\pi \int_0^1 \sqrt{1+u^2} \sqrt{1+u^2} du dv
\\=\int_0^\pi \int_0^1 (1+u^2) dudv
\\=\int_0^\pi \frac{4}{3}dv
\\=\frac{4}{3} \pi
[/itex]
 
  • #4
Very good. Yes it looks correct.
 
  • #5
Thanks! :)
 

Similar threads

Replies
7
Views
332
Replies
4
Views
1K
Replies
21
Views
2K
Replies
9
Views
841
Replies
1
Views
978
Replies
8
Views
1K
Replies
4
Views
1K
Replies
3
Views
2K
Back
Top