System of linear equations-unique, infinitely many, or no solutions

  • Thread starter Thread starter kingwinner
  • Start date Start date
  • Tags Tags
    Linear System
kingwinner
Messages
1,266
Reaction score
0
Suppose we have a system of 2 equations in 2 unknowns x,y:
a1x+b1y=c1
a2x+b2y=c2

If the determinant of
[a1 b1
a2 b2]
is nonzero, then the solution to the system exists and is unique. [I am OK with this]

If the determinant of
[a1 b1
a2 b2]
is zero,
this does not distinguish between the cases of no solution and infinitely many solutions.

To gain some insight, we need to further check the determinatnts of
[a1 c1
a2 c2]
and
[b1 c1
b2 c2]
If both determinants are zero, then the system has infinitely many soltuions.
If at least one of the two determinants are nonzero, then the system has no solution.

===================================

Is the bolded part correct or not? I don't see why it is true. How can we prove it?


Thanks for any help!
 
Last edited:
Physics news on Phys.org
Can someone "confirm or disprove" the bolded part, please?

[my PDE book seems to be applying these ideas from linear algebra to study the solvability of initial value problems for quasilinear partial differential equations, but I can't find those results in my linear algebra textbooks other than the result "det(A) is not 0 <=> solution exists and is unique"]
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top