System of linear equations

  • #1
6
0
Find all solutions to the following system of linear equations:
(x1) – 2(x2) – (x3)+(x4)=1
2(x1) – 3(x2) + (x3) – (x4)=6
3(x1) – 3(x2) + 6(x3))=15
(x1) + 5(x3)+(x4)=9

Using a system of linear equations, I found:
1 -2 -1 0 1
0 1 3 -3 4
0 0 0 6 0
0 0 0 0 0

so three solutions are:
(x1)=9, (x2)=4, (x3)=0, (x4)=0
(x1)=4, (x2)=1, (x3)=1, (x4)=0
(x1)=-1, (x2)=-2, (x3)=2, (x4)=0

How do I write my final solution (ie:what form)?
 

Answers and Replies

  • #2
Find all solutions to the following system of linear equations:
(x1) – 2(x2) – (x3)+(x4)=1
2(x1) – 3(x2) + (x3) – (x4)=6
3(x1) – 3(x2) + 6(x3))=15
(x1) + 5(x3)+(x4)=9

Using a system of linear equations, I found:
1 -2 -1 0 1
0 1 3 -3 4
0 0 0 6 0
0 0 0 0 0

so three solutions are:
(x1)=9, (x2)=4, (x3)=0, (x4)=0
(x1)=4, (x2)=1, (x3)=1, (x4)=0
(x1)=-1, (x2)=-2, (x3)=2, (x4)=0

How do I write my final solution (ie:what form)?

Every solution is a point on a line that goes through <9, 4, 0, 0>. Your book should have some examples of representing lines with a parameter.

I would advise finishing your row reduction to get the matrix in reduced row-echelon form.
 
  • #3
Express it into its nullspace (all the special solutions) and particular solution, if you've done that in linear algebra? The sum of the nullspace and particular solution gives the complete solution.
 

Suggested for: System of linear equations

Replies
7
Views
93
Replies
7
Views
890
Replies
13
Views
572
Replies
4
Views
565
Replies
28
Views
2K
Replies
8
Views
330
Replies
5
Views
460
Replies
18
Views
626
Back
Top