- #1
- 27
- 0
Hello,
I am looking at different ways to solve Systems of Linear Homogenous Differential equations with Constant Coefficients that is [tex]\acute{x}=Ax[/tex] (x and x' are vectors A is a matix) then the solutions are [tex]x= \xi e^{\lambda t}[/tex] where [tex]\xi[/tex] are the eigenvectors and [tex]\lambda[/tex] the eigenvalues of A and the general solution is the sum of all the eigenvectors with constants inserted.
i.e [tex] x= c_{1}\xi^{(1)} e^{\lambda t}+c_{2}\xi^{(2)} e^{\lambda t}[/tex]
The problem I have with this is that I can't figure out how to get mixing since surely if n=2, say, then x=(x1,x2) but to get x1 you are just adding weighted amounts of x1 doesn't ever couple to x2 i.e [tex]x_{1} = c_{1}\xi^{(1)}_1 e^{\lambda t}+c_{2}\xi^{(2)}_{1} e^{\lambda t}[/tex]I assume I am being idiot but if someone could point out where I am going wrong that would be brilliant.
Thanks very much,
P.S I normally solve it like this http://physics.ucsc.edu/~peter/114A/coupled_fol.pdf [Broken] if you know any links to other ways to solve them I would be grateful.
I am looking at different ways to solve Systems of Linear Homogenous Differential equations with Constant Coefficients that is [tex]\acute{x}=Ax[/tex] (x and x' are vectors A is a matix) then the solutions are [tex]x= \xi e^{\lambda t}[/tex] where [tex]\xi[/tex] are the eigenvectors and [tex]\lambda[/tex] the eigenvalues of A and the general solution is the sum of all the eigenvectors with constants inserted.
i.e [tex] x= c_{1}\xi^{(1)} e^{\lambda t}+c_{2}\xi^{(2)} e^{\lambda t}[/tex]
The problem I have with this is that I can't figure out how to get mixing since surely if n=2, say, then x=(x1,x2) but to get x1 you are just adding weighted amounts of x1 doesn't ever couple to x2 i.e [tex]x_{1} = c_{1}\xi^{(1)}_1 e^{\lambda t}+c_{2}\xi^{(2)}_{1} e^{\lambda t}[/tex]I assume I am being idiot but if someone could point out where I am going wrong that would be brilliant.
Thanks very much,
P.S I normally solve it like this http://physics.ucsc.edu/~peter/114A/coupled_fol.pdf [Broken] if you know any links to other ways to solve them I would be grateful.
Last edited by a moderator: