wayneckm
- 66
- 0
Hello all,
I always come across the technique of decomposing a real interval into intervals with rational end point, however, I am a bit confused with the half-open/half-closed cases. For example,
[0,t) = \cup_{q < t, q \in \mathbb{Q}} [0,q). And for the case of [0,t], we can only construct from using "outer sense", meaning that using all rational q > t?
Also, what is the set of \cup_{q < t, q \in \mathbb{Q}} [0,q]?
Thanks.
I always come across the technique of decomposing a real interval into intervals with rational end point, however, I am a bit confused with the half-open/half-closed cases. For example,
[0,t) = \cup_{q < t, q \in \mathbb{Q}} [0,q). And for the case of [0,t], we can only construct from using "outer sense", meaning that using all rational q > t?
Also, what is the set of \cup_{q < t, q \in \mathbb{Q}} [0,q]?
Thanks.