Temperature difference by Dimensional analysis.

pogs
Messages
15
Reaction score
0
Homework Statement
A block of uranium is kept cool in water. How does the difference between the temperature in the centre of the block and the temperature in the water depend on the size of the block?
Relevant Equations
n = n_0*e^(-t/τ) : Radioactive Decay
Attempt at solution:

I wanted to try and solve this with dimensional analysis. I reasoned that I would chose the following dependent variables:
- [V] : Volume ( of the block)
- [Q] : Heat ( the radioactive decay would cause some heating of the water)
- [R]: Radiation
- [Cv]: Heat capacity

I'm thinking the amount of radiation is a factor, it causes the heating and thus the bigger the block the more the radiation, the more heating. Also the heat capacity may play a part.

Taking the dimensions of these I get the following
[V] = L^3
[Q] = M L^2 T ^-2
[R] = L^2 M T^-1
[Cv] = L^2 M K^-1 T

Now we want a temperature so we can set up an equation

Temp(K) = [V]^α * [Q]^β * [R]^γ *[Cv] ^δ = (L^3)^α*(M L^2 T ^-2)^β*(L^2 M T^-1)^γ * (L^2 M K^-1 T)^δ

Taking the dimensions we get

L = 0 = 3α +2β +2γ +2δ
T = 0 = -2β -γ +δ
M = 0 = β +γ +δ
K = 1 = -δ

But when I solve these equations I get
α = 0
β = 2
γ = -1
δ = -1

giving me an equation that says

Q^2/(R*C_v)

Which I'm not to convinced by... Also V disappears as alpha is zero. I guess my dependent variables are wrong somehow. Any ideas/tips?
 
Physics news on Phys.org
pogs said:
I wanted to try and solve this with dimensional analysis
Not convinced that that is possible.

How about an approach along the line
Uranium decays. Heat generated ##\propto## ...​
Heat exchange with surrounding water ##\propto## ...​

?

##\ ##
 
Other parameters you should include are thermal conductivity of the uranium and temperature of the water.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top