MHB Tensor Products of Modules - Bland - Remark, Page 65

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules Tensor
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book "Rings and Their Modules ...

Currently I am focused on Section 2.3 Tensor Products of Modules ... ...

I need some help in order to fully understand the Remark that Bland makes on Pages 65- 66

Bland's remark reads as follows:View attachment 5648
View attachment 5651
Question 1

In the above text by Bland we read the following:

"... ... but when $$g$$ is specified in this manner it is difficult to show that it is well defined ... ... "

What does Bland mean by showing $$g$$ is well defined and why would this be difficult ... ...Reflection on Question 1Reflecting ... ... I suspect that when Bland talks about $$g$$ being "well defined" he means that if we choose a different element ... say, $$\sum_{ i = 1}^m n'_i ( x'_i \otimes y'_i )$$ in the same coset as $$\sum_{ i = 1}^m n_i ( x_i \otimes y_i )$$ ... ... then $$g$$ still maps onto $$\sum_{ i = 1}^m n_i ( f(x_i) \otimes y_i ) $$ ... ... is that correct ...
Question 2

In the above text by Bland we read the following:

"... ... Since the map $$h = \rho' ( f \times id_N )$$ is an R-balanced map ... ... "Why is $$h = \rho' ( f \times id_N )$$ an R-balanced map ... can someone please demonstrate that this is the case?
Hope someone can help ... ...

Peter==================================================================================The following text including some relevant definitions may be useful to readers not familiar with Bland's textbook... note in particular the R-module in Bland's text means right R-module ...
View attachment 5650
 
Last edited:
Physics news on Phys.org
Yes, one has to ensure that if $x_i \otimes y_i = x'_i \otimes y'_i$ that $f(x_i) \otimes y_i = f(x'_i) \otimes y'_i$, which can be hard to do, since the coset containing $(x_i,y_i)$ is often incredibly large (the sums can then be put together "by extending by linearity"). So your answer about $g$ is correct, it must be constant on cosets (and not depend on the representative pairs $(x_i,y_i)$).

Let's just demonstrate $h$ is $R$-balanced:

$h(x_1+x_2,y) = [\rho' \circ (f \times 1_N)](x_1 + x_2,y)$

$= \rho'(f(x_1+x_2),y) = \rho'(f(x_1) + f(x_2),y)$ (since $f$ is a module homomorphism)

$= [f(x_1)+f(x_2)]\otimes y$ (since $\rho'$ is the canonical tensor map)

$= f(x_1)\otimes y + f(x_2)\otimes y$ (since the canonical tensor map is, by construction, $R$-balanced)

$=\rho'(f(x_1),y) + \rho'(f(x_2),y)$ (definition of what $\rho'$ is)

$ =[\rho'\circ(f\times1_N)](x_1,y) + [\rho'\circ(f \times 1_N)](x_2,y)$

$= h(x_1,y) + h(x_2,y)$.

Similarly,

$h(x,y_1+y_2) = [\rho'\circ(f \times 1_N)](x,y_1+y_2)$

$= \rho'(f(x),y_1+y_2) = f(x)\otimes(y_1+y_2) = f(x)\otimes y_1+f(x)\otimes y_2$

$= [\rho'(f \times1_n)](x,y_1) + [\rho'\circ(f \times 1_N)](x,y_2)$

$= h(x,y_1) + h(x,y_2)$.

Finally, for $a \in R$:

$h(xa,y) = [\rho'\circ(f\times 1_N)](xa,y)$

$= \rho'(f(xa),y) = \rho'(f(x)a,y) = f(x)a\otimes y$

$= f(x) \otimes ay = \rho'(f(x),ay) = [\rho'\circ(f \times 1_N)](x,ay) = h(x,ay)$

Note that we are "wedding" a right-module to a left-module "over the middle". If $R$ is commutative, we don't have to take such precautions, and can just use the more standard term $R$-bilinear.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top