B Terminal Velocity Equation in vertical cylinder with some fluid

AI Thread Summary
The discussion focuses on deriving an equation for terminal velocity in a vertical cylinder containing fluid, emphasizing that as the diameter of the sphere increases, its velocity decreases. Participants clarify that the terminal velocity is influenced by both the diameters of the sphere and the cylinder, with all relevant variables known. The original poster is studying Stokes' law and is interested in its application in tunnel design for subway systems in South Korea. They express difficulty finding specific information on how terminal velocity changes with the radius of the cylinder. The conversation highlights the need for a clear mathematical representation of these relationships.
yejin
Messages
2
Reaction score
0
I just have a question that could you guys make an equation that expresses the terminal velocity based on followed condition?
- When diameter increase, velocity decrease
- velocity should change depending on both cylinder and sphere's diameter
- We know every variable
- The sphere is in situation follow:
1. Net Force is ZeroCd = Drag coefficient
d = diameter of sphere
D = Diameter of cylinder

I hope you guys help me...
I really need you guys' help!

Sorry for grammar or something Langauge mistake (English is not my first language...)
 
Physics news on Phys.org
Welcome to PF.

Do you mean terminal velocity in free-fall in a fluid? If so, there are lots of web pages that should give you the formulas. What have you found so far with your Google searches?

Also, is this for schoolwork? If not, what is the application?
 
Thank you for your response! I meant the terminal velocity in free-fall in a fluid!

I am just studying stokes law and trying to research it myself. I am wondering how tunnel designers consider these kinds of issues when they are building the subway. Because South Korea, where I am living, has developed a subway system.

I tried to search from Google, but there is no information about the change of terminal velocity depending on the radius of cylinder changes and I could make the equation that
Vt = {24(viscosity)}/{(Drag coefficient)(Fluid density)(diameter of the ball)} -> When d increase, Vt decrease
 
Last edited by a moderator:
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top