You can't do this with vector fields (photons, gluons, gauge bosons of the weak interaction) because they are conformally invariant. What this means is basically that they are insensitive to length scales, so they don't feel the expansion of the universe and microscopic quantum fluctuations can't be stretched to superhorizon scales.
I must say I can't think of what would be the problem with fermions but I assume there are some given that they aren't considered much in this context in the literature as far as I'm aware. Perhaps other people have more insight.
That leaves scalar fields. The only scalar field in the Standard Model is the Higgs, and like any light scalar field it will acquire a spectrum of superhorizon perturbations. However, as bapowell pointed out, if inflation is driven by another scalar field - the inlfaton - the perturbations in the Higgs field will be subdominant compared to the perturbations of the inflaton. You can't realize inflation with the Higgs itself in the vanilla Standard Model because the potential is not sufficiently flat. However, if the Higgs is coupled non-minimally to gravity then this can be done. This scenario (Higgs inflation) is however disfavored if the the recent measurement from BICEP is a signature of primordial gravitational waves.
Maybe that's a lot of information, but what to take away is that is none of the fields in the vanilla Standard Model + gravity possesses all the necessary properties for successful inflation and generation of primordial perturbation.