PeterDonis
Mentor
- 48,915
- 24,997
Edriven said:the difference in the space station and the sun is that the space station is not accelerating away from the earth. Due to red shift we know that we are accelerating away from other stars. Right?
Not in the sense I have been using the term "acceleration". You will notice that I have tried to say "proper acceleration", to make it clear that I am talking about acceleration that is actually felt--or, in the case of the space station and the sun and distant galaxies, not felt. All of those objects are in free fall, feeling zero acceleration.
The kind of "acceleration" you are referring to when you say that the sun is accelerating away from other stars is more precisely called "coordinate acceleration". (Actually, the red shifts you are referring to are from other galaxies, not other stars; we can't see individual stars at the distances at which the cosmological redshift becomes measurable. So it's more correct to say that our galaxy as a whole sees other galaxies' light as redshifted.) The key point about coordinate acceleration is that you can change it by changing coordinates--i.e., by a mathematical abstraction that doesn't change anything physical. So if you are trying to understand the actual physics going on, coordinate acceleration is the wrong thing to focus on.
Edriven said:red shift tells us that the universe is accelerating.
No, they don't. Red shifts, in and of themselves, only tell us that the universe is expanding. They do not tell us that the expansion is accelerating. For that, we need not only the observation that there are red shifts, but detailed correlations between red shifts and other observations, like the brightness and angular size of distant galaxies.
Also, once again, when we say the universe's expansion is "accelerating", we mean this in the sense of coordinate acceleration, not proper acceleration. All of the galaxies have zero proper acceleration. See below.
Edriven said:Therefore the sun can not be in a balanced free fall because it is accelerating.
You are confusing coordinate acceleration and proper acceleration here. The sun has zero proper acceleration, and that means there is no net force acting on the sun. The sun does have nonzero coordinate acceleration in certain coordinates, but coordinate acceleration does not tell you whether there is an unbalanced net force. Only proper acceleration does. As above, all of the galaxies have zero proper acceleration, so there is no unbalanced net force acting on any of them.