Is the Bisection Technique accurate for finding roots on a closed interval?

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
AI Thread Summary
The Bisection Technique is accurate for finding roots on a closed interval, but it requires the function to be one-to-one and either increasing or decreasing within that interval. In the example of f(x) = x^2 on [1,2], there are no roots since f(x) does not equal zero in that range. The algorithm's effectiveness is contingent on the user selecting a valid starting interval based on the function's behavior. Additionally, the article fails to clarify that sign changes at the endpoints indicate the presence of roots, while the absence of sign changes suggests no roots or an even number of roots. Proper understanding of the function and its graph is essential for effectively applying the Bisection Technique.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
in this page they are descrbing the forthmentioned technique.
and I am quite puzzled, because if i get this interval:
[1,2]
let's take the equation f(x)=x^2.
now if we follow the algorithm we find that there might not be a root between them, which is ofcourse absurd. (sqrt2 and sqrt3 are ofcourse included inbetween).

anyway, here is the page http://spiff.rit.edu/classes/phys317/lectures/closed_root/closed_root.html
 
Mathematics news on Phys.org
'root' means that f(x) = 0

clearly x^2 is not 0 in the interval you mention, so the algorithm is correct

given that everything in the interval [1,2] is the square root of *something*, even your logic there is flawed.
 
The roots or zeros of a function are synonymous with the "x-intercepts" of that function.

The article doesn't mention that the function has to be one-to-one or either increasing or decreasing within the interval for the algorithm to work properly. (Consider a parabola with a vertex below the origin between an interval [x1, x2]. If x2-x1 is greater than the distance between the roots, the algorithm doesn't work.)
 
The linked algorithm is poorly written. Like signs at the end points of the test interval indicate either no roots or an EVEN NUMBER of roots on the interval. Like wise a sign change on the interval means an odd number of roots on the test interval. The user of the algorithm must have sufficient knowledge of the function to pick a valid starting interval. The best way to get the need information is to plot the function.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top