sshaep
- 3
- 0
Clebsch-Gordan Theorem??
symmetric spinor tensors are IRR of SU(2), i.e., T_{\undergroup{\alpha_1\cdots\alpha_r}}
The Clebsch-Gordan theorem says,
{\{j_1\}}\otimes{\{j_2\}}={\{j_1+j_2\}}\oplus{\{j_1+j_2-1\}}\oplus\cdots\oplus{\{|j_1-j_2|\}}.
Can I prove this theorem by symmetrizing the tensor product,
T_{\alpha_1\cdots\alpha_{2j_1}}\otimes T_{\beta_1\cdots\beta_{2j_2}}=(express sum of fully symmetric tensors) ??
symmetric spinor tensors are IRR of SU(2), i.e., T_{\undergroup{\alpha_1\cdots\alpha_r}}
The Clebsch-Gordan theorem says,
{\{j_1\}}\otimes{\{j_2\}}={\{j_1+j_2\}}\oplus{\{j_1+j_2-1\}}\oplus\cdots\oplus{\{|j_1-j_2|\}}.
Can I prove this theorem by symmetrizing the tensor product,
T_{\alpha_1\cdots\alpha_{2j_1}}\otimes T_{\beta_1\cdots\beta_{2j_2}}=(express sum of fully symmetric tensors) ??
Last edited: